Solveeit Logo

Question

Question: If \(I = \int _ { 0 } ^ { \pi / 4 } \sin ^ { 2 } x d x\) and\(J = \int _ { 0 } ^ { \pi / 4 } \cos ^ ...

If I=0π/4sin2xdxI = \int _ { 0 } ^ { \pi / 4 } \sin ^ { 2 } x d x andJ=0π/4cos2xdxJ = \int _ { 0 } ^ { \pi / 4 } \cos ^ { 2 } x d x then I=I =

A

π4J\frac { \pi } { 4 } - J

B

C

JJ

D

J2\frac { J } { 2 }

Answer

π4J\frac { \pi } { 4 } - J

Explanation

Solution

AddingI+J=0π/4dx=π4I=π4JI + J = \int _ { 0 } ^ { \pi / 4 } d x = \frac { \pi } { 4 } \Rightarrow I = \frac { \pi } { 4 } - J.