Solveeit Logo

Question

Question: If \(f ( x )\) is an odd function of \(x\) then \(\int _ { - \frac { \pi } { 2 } } ^ { \frac { \p...

If f(x)f ( x ) is an odd function of xx then π2π2f(cosx)dx\int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } f ( \cos x ) d x is equal to

A

0

B

0π2f(cosx)dx\int _ { 0 } ^ { \frac { \pi } { 2 } } f ( \cos x ) d x

C

20π2f(sinx)dx2 \int _ { 0 } ^ { \frac { \pi } { 2 } } f ( \sin x ) d x

D

0πf(cosx)dx\int _ { 0 } ^ { \pi } f ( \cos x ) d x

Answer

20π2f(sinx)dx2 \int _ { 0 } ^ { \frac { \pi } { 2 } } f ( \sin x ) d x

Explanation

Solution

f(cosx)f ( \cos x ) is an even function.

f(cos(x))=f(cosx)\because f ( \cos ( - x ) ) = f ( \cos x )

π/2π/2f(cosx)dx=20π/2f(cosx)dx\therefore \int _ { - \pi / 2 } ^ { \pi / 2 } f ( \cos x ) d x = 2 \int _ { 0 } ^ { \pi / 2 } f ( \cos x ) d x =20π/2f(sinx)dx= 2 \int _ { 0 } ^ { \pi / 2 } f ( \sin x ) d x.