Solveeit Logo

Question

Mathematics Question on Statistics

If mean of the n observations x1,x2,x3,...xn {x_1, x_2, x_3,... x_n} be xˉ\bar{x} , then the mean of n observations 2x1+3,2x2+3,2x3+3,....,2xn+3 {2x_1 + 3, 2x_2 + 3, 2x_3 + 3, ...., 2x_{n} + 3} is

A

\ce3xˉ+2\ce{3 \bar{x} +2}

B

\ce2xˉ+3\ce{2 \bar{x} + 3}

C

\cexˉ+3\ce{ \bar{x} + 3 }

D

\ce2xˉ\ce{2 \bar{x} }

Answer

\ce2xˉ+3\ce{2 \bar{x} + 3}

Explanation

Solution

Required mean = 1ni=1n(2xi+3) {\frac{1}{n} \displaystyle\sum_{i=1}^{n} (2x_{i} + 3)} = {\frac{2}{n} } \bigg( { \displaystyle\sum_{i=1}^{n} x_{i}} \bigg) + {\frac{3n}{n}} = 2 \bigg\\{ { \frac{1}{n} } \bigg( {\displaystyle\sum_{i=1}^{n} x_{i} } \bigg) \bigg\\} + 3 =2xˉ+3 { = 2 \bar{x} + 3}