Solveeit Logo

Question

Question: If \(m\cos(\theta + \alpha) = n\cos(\theta - \alpha)\), then \(\cot\theta\cot\alpha\)equal to...

If mcos(θ+α)=ncos(θα)m\cos(\theta + \alpha) = n\cos(\theta - \alpha), then cotθcotα\cot\theta\cot\alphaequal to

A

m+nmn\frac{m + n}{m - n}

B

mnm+n\frac{m - n}{m + n}

C

m+nnm\frac{m + n}{n - m}

D

nmn+m\frac{n - m}{n + m}

Answer

m+nnm\frac{m + n}{n - m}

Explanation

Solution

mn=cos(θα)cos(θ+α)\frac{m}{n} = \frac{\cos(\theta - \alpha)}{\cos(\theta + \alpha)}

By componendo and dividendo rule,

m+nmn=cos(θα)+cos(θ+α)cos(θα)cos(θ+α)\frac{m + n}{m - n} = \frac{\cos(\theta - \alpha) + \cos(\theta + \alpha)}{\cos(\theta - \alpha) - \cos(\theta + \alpha)}m+nmn=2cosθcosα2sinθsinα\frac{m + n}{m - n} = \frac{2\cos\theta\cos\alpha}{- 2\sin\theta\sin\alpha}

cotθcosα=m+nnm\cot\theta\cos\alpha = \frac{m + n}{n - m}.