Question
Question: If \[matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array...
If matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\\
{\sin \alpha }&{\cos \alpha }&0 \\\
0&0&1
\end{array}} \right)then find A−1and prove that:
(i) A−1A=I3
(ii) A−1=F(−α)
(iii) A.(adjA) = ∣A∣I = (adj A).A
Solution
Hint:- We will first find the modulus of A then we will find the minors and cofactors and then put them into the formula for A−1.
For (i) we will multiply the matrices A−1 and A and then prove it equal to RHS.
For (ii) we will replace α by −α in the given matrix and then prove it equal to A−1.
For (iii) we will first pre multiply A with adjA and prove it equal to modulus of A and then we will post multiply A with adjA and prove it equal to modulus of A.
Complete step-by-step answer:
We are given:
|A| = \cos \alpha \left[ {\left( 1 \right)\left( {\cos \alpha } \right) - 0} \right] - \sin \alpha \left[ {\left( 1 \right)\left( { - \sin \alpha } \right) - 0} \right] + 0 \\
|A| = \cos \alpha \left[ {\cos \alpha } \right] + \sin \alpha \left[ {\sin \alpha } \right] \\
|A| = {\cos ^2}\alpha + {\sin ^2}\alpha \\
F11 = + \left| {\begin{array}{{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F12 = - \left| {\begin{array}{{20}{c}}
{\sin \alpha }&0 \\
0&1
\end{array}} \right| = - \sin \alpha \\
F13 = + \left| {\begin{array}{{20}{c}}
{\sin \alpha }&{\cos \alpha } \\
0&0
\end{array}} \right| = 0 \\
F21 = - \left| {\begin{array}{{20}{c}}
{ - \sin \alpha }&0 \\
0&1
\end{array}} \right| = \sin \alpha \\
F22 = + \left| {\begin{array}{{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F23 = - \left| {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
0&0
\end{array}} \right| = 0 \\
F31 = + \left| {\begin{array}{{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&0
\end{array}} \right| = 0 \\
F32 = - \left| {\begin{array}{{20}{c}}
{\cos \alpha }&0 \\
{\sin \alpha }&0
\end{array}} \right| = 0 \\
F33 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right| = 1 \\
adjA = {B^T} = {\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)^T} \\
adjA = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
{A^{ - 1}} = \dfrac{1}{1}\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
{A^{ - 1}} = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = I_3 \\
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{{20}{c}}
{\cos \left( { - \alpha } \right)}&{ - \sin \left( { - \alpha } \right)}&0 \\
{\sin \left( { - \alpha } \right)}&{\cos \left( { - \alpha } \right)}&0 \\
0&0&1
\end{array}} \right) \\
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) = {A^{ - 1}} \\
LHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 1 \right) \\
RHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
RHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
RHS = \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 2 \right) \\