Solveeit Logo

Question

Question: If \[matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array...

If matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha }&0 \\\ {\sin \alpha }&{\cos \alpha }&0 \\\ 0&0&1 \end{array}} \right)then find A1{A^{ - 1}}and prove that:
(i) A1A=I3{A^{ - 1}}A = I_3
(ii) A1=F(α){A^{ - 1}} = F( - \alpha )
(iii) A.(adjA) = AI = (adj A).AA.\left( {adjA} \right){\text{ }} = {\text{ }}\left| A \right|I{\text{ }} = {\text{ }}\left( {adj{\text{ }}A} \right).A

Explanation

Solution

Hint:- We will first find the modulus of A then we will find the minors and cofactors and then put them into the formula for A1{A^{ - 1}}.
For (i) we will multiply the matrices A1{A^{ - 1}} and AA and then prove it equal to RHS.
For (ii) we will replace α\alpha by α- \alpha in the given matrix and then prove it equal to A1{A^{ - 1}}.
For (iii) we will first pre multiply AA with adjAadjA and prove it equal to modulus of AA and then we will post multiply AA with adjAadjA and prove it equal to modulus of AA.

Complete step-by-step answer:
We are given:

{\cos \alpha }&{ - \sin \alpha }&0 \\\ {\sin \alpha }&{\cos \alpha }&0 \\\ 0&0&1 \end{array}} \right)$$ Calculating the modulus of A we get: Expanding along row 1 we get:

|A| = \cos \alpha \left[ {\left( 1 \right)\left( {\cos \alpha } \right) - 0} \right] - \sin \alpha \left[ {\left( 1 \right)\left( { - \sin \alpha } \right) - 0} \right] + 0 \\
|A| = \cos \alpha \left[ {\cos \alpha } \right] + \sin \alpha \left[ {\sin \alpha } \right] \\
|A| = {\cos ^2}\alpha + {\sin ^2}\alpha \\

Now since we know that: $${\cos ^2}\alpha + {\sin ^2}\alpha = 1$$ Hence, $$|A| = 1$$ Now we will calculate the cofactors:

F11 = + \left| {\begin{array}{{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F12 = - \left| {\begin{array}{
{20}{c}}
{\sin \alpha }&0 \\
0&1
\end{array}} \right| = - \sin \alpha \\
F13 = + \left| {\begin{array}{{20}{c}}
{\sin \alpha }&{\cos \alpha } \\
0&0
\end{array}} \right| = 0 \\
F21 = - \left| {\begin{array}{
{20}{c}}
{ - \sin \alpha }&0 \\
0&1
\end{array}} \right| = \sin \alpha \\
F22 = + \left| {\begin{array}{{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F23 = - \left| {\begin{array}{
{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
0&0
\end{array}} \right| = 0 \\
F31 = + \left| {\begin{array}{{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&0
\end{array}} \right| = 0 \\
F32 = - \left| {\begin{array}{
{20}{c}}
{\cos \alpha }&0 \\
{\sin \alpha }&0
\end{array}} \right| = 0 \\
F33 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right| = 1 \\

Now we will write the matrix formed by the adjoint of A. $$B = \left( {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha }&0 \\\ {\sin \alpha }&{\cos \alpha }&0 \\\ 0&0&1 \end{array}} \right)$$ Therefore,

adjA = {B^T} = {\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)^T} \\
adjA = \left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\

Now we know that: $${A^{ - 1}} = \dfrac{{adjA}}{{|A|}}$$ Putting the values we get:

{A^{ - 1}} = \dfrac{1}{1}\left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
{A^{ - 1}} = \left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\

(i) Considering LHS we get: $$LHS = {A^{ - 1}}A$$ Solving the LHS we get:

LHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{
{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = I_3 \\

Hence LHS=RHS therefore verified. (ii) The matrix is given by: $${A^{ - 1}} = \left( {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha }&0 \\\ { - \sin \alpha }&{\cos \alpha }&0 \\\ 0&0&1 \end{array}} \right)$$ Replacing $$\alpha $$ by $$ - \alpha $$in the given matrix A we get:

F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{{20}{c}}
{\cos \left( { - \alpha } \right)}&{ - \sin \left( { - \alpha } \right)}&0 \\
{\sin \left( { - \alpha } \right)}&{\cos \left( { - \alpha } \right)}&0 \\
0&0&1
\end{array}} \right) \\
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) = {A^{ - 1}} \\

Hence verified. (iii) Considering the LHS we get:- $$LHS = A.adjA$$ Calculating the LHS we get:

LHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{
{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 1 \right) \\

Now considering RHS we get:- $$RHS = adjA.A$$ Calculating the RHS we get:-

RHS = \left( {\begin{array}{{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{
{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
RHS = \left( {\begin{array}{{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
RHS = \left( {\begin{array}{
{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 2 \right) \\

Hence from equation 1 and equation2 the third statement is proved. Note: The inverse of matrix exist if and only if $$|A| \ne 0$$. The inverse of a matrix A is given by: $${A^{ - 1}} = \dfrac{{adjA}}{{|A|}}$$