Solveeit Logo

Question

Question: If matrix A is a circulant matrix whose elements of first row are a, b, c and all the given elements...

If matrix A is a circulant matrix whose elements of first row are a, b, c and all the given elements are positive such that abc=1abc=1 and ATA=I{{A}^{T}}A=I, then find the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}}?
(a) 0
(b) 3
(c) 1
(d) 4

Explanation

Solution

We start solving the solving by recalling the definition of circulant matrix. We write the matrix A by using this definition and find the transpose of it. We now multiply the given matrix and its transpose using the given ATA=I{{A}^{T}}A=I. We then compare both sides and get the required values which will be useful to find the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}}.

Complete step by step answer:
Given that we have matrix A which is a circulant matrix. We have elements of the first row as a, b, c which are positive and the value of abcabc is 1. We also have that the matrix satisfying ATA=I{{A}^{T}}A=I and we need to find the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}}.
We know that the circulant matrix is a square matrix in which the elements of the next row are rotated one element to the right relative to the previous row. Here, the last element of the previous row will be the first element of the next row. First element of the previous row will be the second element off the next row and so on.
Now, we write the circulant matrix with elements of the first row as a, b and c. Since we have only 3 elements in the first row, the order of the matrix will be 3×33\times 3 as the circulant matrix is a square matrix.
We get the circulant matrix A as A=[abc cab bca ]A=\left[ \begin{matrix} a & b & c \\\ c & a & b \\\ b & c & a \\\ \end{matrix} \right].
We know that the transpose of the matrix is formed by interchanging rows and columns of a matrix.
So, we get transpose of matrix A as AT=[acb bac cba ]{{A}^{T}}=\left[ \begin{matrix} a & c & b \\\ b & a & c \\\ c & b & a \\\ \end{matrix} \right].
According to the problem, we have ATA=I{{A}^{T}}A=I. We know that is an identity matrix which has the value of all elements of principal diagonal as 1 and others as 0.
ATA=I\Rightarrow {{A}^{T}}A=I.
[abc cab bca ]×[acb bac cba ]=[100 010 001 ]\Rightarrow \left[ \begin{matrix} a & b & c \\\ c & a & b \\\ b & c & a \\\ \end{matrix} \right]\times \left[ \begin{matrix} a & c & b \\\ b & a & c \\\ c & b & a \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right].
[(a×a)+(b×b)+(c×c)(a×c)+(b×a)+(c×b)(a×b)+(b×c)+(c×a) (c×a)+(a×b)+(b×a)(c×c)+(a×a)+(b×b)(c×b)+(a×c)+(b×a) (b×a)+(c×b)+(a×c)(b×c)+(c×a)+(a×b)(b×b)+(c×c)+(a×a) ]=[100 010 001 ]\Rightarrow \left[ \begin{matrix} \left( a\times a \right)+\left( b\times b \right)+\left( c\times c \right) & \left( a\times c \right)+\left( b\times a \right)+\left( c\times b \right) & \left( a\times b \right)+\left( b\times c \right)+\left( c\times a \right) \\\ \left( c\times a \right)+\left( a\times b \right)+\left( b\times a \right) & \left( c\times c \right)+\left( a\times a \right)+\left( b\times b \right) & \left( c\times b \right)+\left( a\times c \right)+\left( b\times a \right) \\\ \left( b\times a \right)+\left( c\times b \right)+\left( a\times c \right) & \left( b\times c \right)+\left( c\times a \right)+\left( a\times b \right) & \left( b\times b \right)+\left( c\times c \right)+\left( a\times a \right) \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right].
[(a2)+(b2)+(c2)(ac)+(ba)+(cb)(ab)+(bc)+(ca) (ca)+(ab)+(ba)(c2)+(a2)+(b2)(cb)+(ac)+(ba) (ba)+(cb)+(ac)(bc)+(ca)+(ab)(b2)+(c2)+(a2) ]=[100 010 001 ]\Rightarrow \left[ \begin{matrix} \left( {{a}^{2}} \right)+\left( {{b}^{2}} \right)+\left( {{c}^{2}} \right) & \left( ac \right)+\left( ba \right)+\left( cb \right) & \left( ab \right)+\left( bc \right)+\left( ca \right) \\\ \left( ca \right)+\left( ab \right)+\left( ba \right) & \left( {{c}^{2}} \right)+\left( {{a}^{2}} \right)+\left( {{b}^{2}} \right) & \left( cb \right)+\left( ac \right)+\left( ba \right) \\\ \left( ba \right)+\left( cb \right)+\left( ac \right) & \left( bc \right)+\left( ca \right)+\left( ab \right) & \left( {{b}^{2}} \right)+\left( {{c}^{2}} \right)+\left( {{a}^{2}} \right) \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right].
[a2+b2+c2ab+bc+caab+bc+ca ab+bc+caa2+b2+c2ab+bc+ca ab+bc+caab+bc+caa2+b2+c2 ]=[100 010 001 ]\Rightarrow \left[ \begin{matrix} {{a}^{2}}+{{b}^{2}}+{{c}^{2}} & ab+bc+ca & ab+bc+ca \\\ ab+bc+ca & {{a}^{2}}+{{b}^{2}}+{{c}^{2}} & ab+bc+ca \\\ ab+bc+ca & ab+bc+ca & {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right] ---(1).
We know that if two matrices are said to be equal, then the elements at the corresponding places must be equal i.e., if [abc def ghi ]=[jkl mno pqr ]\left[ \begin{matrix} a & b & c \\\ d & e & f \\\ g & h & i \\\ \end{matrix} \right]=\left[ \begin{matrix} j & k & l \\\ m & n & o \\\ p & q & r \\\ \end{matrix} \right], then a=ja=j, b=kb=k,……,h=qh=q and i=ri=r. We apply this in equation (1).
So, we get a2+b2+c2=1{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1 and ab+bc+ca=0ab+bc+ca=0. Let us find the value of a+b+ca+b+c.
We know that (a+b+c)2=a2+b2+c2+2ab+2bc+2ca{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca.
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)\Rightarrow {{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right).
Let us substitute a2+b2+c2=1{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1 and ab+bc+ca=0ab+bc+ca=0.
(a+b+c)2=1+2(0)\Rightarrow {{\left( a+b+c \right)}^{2}}=1+2\left( 0 \right).
(a+b+c)2=1+0\Rightarrow {{\left( a+b+c \right)}^{2}}=1+0.
(a+b+c)2=1\Rightarrow {{\left( a+b+c \right)}^{2}}=1.
a+b+c=±1\Rightarrow a+b+c=\pm 1 ---(2).
We know that (a+b+c)(a2+b2+c2abbcca)=a3+b3+c33abc\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc.
(a+b+c)(a2+b2+c2(ab+bc+ca))=a3+b3+c33abc\Rightarrow \left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-\left( ab+bc+ca \right) \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc.
(±1)(10)=a3+b3+c33abc\Rightarrow \left( \pm 1 \right)\left( 1-0 \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc.
(±1)(1)=a3+b3+c33abc\Rightarrow \left( \pm 1 \right)\left( 1 \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc.
According to the problem we have abc=1abc=1.
(±1)(1)=a3+b3+c33(1)\Rightarrow \left( \pm 1 \right)\left( 1 \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3\left( 1 \right).
±1=a3+b3+c33\Rightarrow \pm 1={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3.
We have a3+b3+c33=1{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3=1 or a3+b3+c33=1{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3=-1.
a3+b3+c3=1+3\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=1+3 or a3+b3+c3=1+3{{a}^{3}}+{{b}^{3}}+{{c}^{3}}=-1+3.
a3+b3+c3=4\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}=4 or a3+b3+c3=2{{a}^{3}}+{{b}^{3}}+{{c}^{3}}=2.
We have found the value of a3+b3+c3{{a}^{3}}+{{b}^{3}}+{{c}^{3}} as 2 or 4.

So, the correct answer is “Option D”.

Note: We can also solve the problem by taking determinant for the given condition ATA=I{{A}^{T}}A=I. We use the fact that the determinant of the matrix is equal to the determinant of its transpose to get the value of k. If we are given a problem with having more than one correct answer in the options, we should check whether the second answer is present or not.