Solveeit Logo

Question

Question: If matrix A can be given as \(\left[ \begin{matrix} {{e}^{t}} & {{e}^{-t}}\cos \theta & {{e}^{-...

If matrix A can be given as [etetcosθetsinθ etetcosθetsinθetsinθ+etcosθ et2etsinθ2etcosθ ]\left[ \begin{matrix} {{e}^{t}} & {{e}^{-t}}\cos \theta & {{e}^{-t}}\sin \theta \\\ {{e}^{t}} & -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ {{e}^{t}} & 2{{e}^{-t}}\sin \theta & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right], then A is
(A) Invertible only if t=π2 (B) Not invertible for any tR (C) Invertible for all tR (D) Invertible only if t=π \begin{aligned} & \left( A \right)\text{ Invertible only if }t=\dfrac{\pi }{2} \\\ & \left( B \right)\text{ Not invertible for any }t\in R \\\ & \left( C \right)\text{ Invertible for all }t\in R \\\ & \left( D \right)\text{ Invertible only if }t=\pi \\\ \end{aligned}

Explanation

Solution

We solve this problem starting with taking the given matrix and taking the value et{{e}^{t}} and et{{e}^{-t}} common from the columns 1,2 and 3 respectively and then applying elementary row operations to simplify the matrix and then calculate the determinant of the matrix A. Then we find the condition for which the determinant is equal to zero. In all other cases than those, matrix A is invertible.

Complete step-by-step solution:
The matrix we were given is A=[etetcosθetsinθ etetcosθetsinθetsinθ+etcosθ et2etsinθ2etcosθ ]A=\left[ \begin{matrix} {{e}^{t}} & {{e}^{-t}}\cos \theta & {{e}^{-t}}\sin \theta \\\ {{e}^{t}} & -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ {{e}^{t}} & 2{{e}^{-t}}\sin \theta & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right]
We need to find the condition for which the inverse of A exists.
Let us go through the concept of the inverse of a matrix.
A matrix A is said to have inverse if and only if its determinant is not equal to zero.
So, let us find the determinant of our given matrix A using elementary row operations.
A=etetcosθetsinθ etetcosθetsinθetsinθ+etcosθ et2etsinθ2etcosθ \Rightarrow \left| A \right|=\left| \begin{matrix} {{e}^{t}} & {{e}^{-t}}\cos \theta & {{e}^{-t}}\sin \theta \\\ {{e}^{t}} & -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ {{e}^{t}} & 2{{e}^{-t}}\sin \theta & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right|
As we see at the matrix, we can take et{{e}^{t}} common from the first column, et{{e}^{-t}} common from the second and third column. Then we get,
A=(et×et×et)1cosθsinθ 1cosθsinθsinθ+cosθ 12sinθ2cosθ   A=(et)1cosθsinθ 1cosθsinθsinθ+cosθ 12sinθ2cosθ  \begin{aligned} & \Rightarrow \left| A \right|=\left( {{e}^{t}}\times {{e}^{-t}}\times {{e}^{-t}} \right)\left| \begin{matrix} 1 & \cos \theta & \sin \theta \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \\\ & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} 1 & \cos \theta & \sin \theta \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ \end{aligned}
Now, let us apply the row operation, add Row 2 to Row 1
A=(et)1+1cosθ+(cosθsinθ)sinθ+(sinθ+cosθ) 1cosθsinθsinθ+cosθ 12sinθ2cosθ  A=(et)2sinθcosθ 1cosθsinθsinθ+cosθ 12sinθ2cosθ  \begin{aligned} & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} 1+1 & \cos \theta +\left( -\cos \theta -\sin \theta \right) & \sin \theta +\left( -\sin \theta +\cos \theta \right) \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} 2 & -\sin \theta & \cos \theta \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ \end{aligned}
Now, let us divide Row 3 with 2 and then add it to Row 1.
A=(et)2+12sinθ+2sinθ2cosθ+2cosθ2 1cosθsinθsinθ+cosθ 12sinθ2cosθ   A=(et)52sinθ+sinθcosθcosθ 1cosθsinθsinθ+cosθ 12sinθ2cosθ   A=(et)5200 1cosθsinθsinθ+cosθ 12sinθ2cosθ  \begin{aligned} & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} 2+\dfrac{1}{2} & -\sin \theta +\dfrac{2\sin \theta }{2} & \cos \theta +\dfrac{-2\cos \theta }{2} \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \\\ & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} \dfrac{5}{2} & -\sin \theta +\sin \theta & \cos \theta -\cos \theta \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \\\ & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} \dfrac{5}{2} & 0 & 0 \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ \end{aligned}
Now let us find the value of determinant of above obtained matrix after transformation,
5200 1cosθsinθsinθ+cosθ 12sinθ2cosθ  52[(2cosθ)(cosθsinθ)(2sinθ)(sinθ+cosθ)] 52[(2cos2θ+2sinθcosθ)(2sin2θ+2sinθcosθ)] 52[2cos2θ+2sinθcosθ+2sin2θ2sinθcosθ] 52[2(cos2θ+sin2θ)] 52(2) 5 \begin{aligned} & \Rightarrow \left| \begin{matrix} \dfrac{5}{2} & 0 & 0 \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \Rightarrow \dfrac{5}{2}\left[ \left( -2\cos \theta \right)\left( -\cos \theta -\sin \theta \right)-\left( 2\sin \theta \right)\left( -\sin \theta +\cos \theta \right) \right] \\\ & \Rightarrow \dfrac{5}{2}\left[ \left( 2{{\cos }^{2}}\theta +2\sin \theta \cos \theta \right)-\left( -2{{\sin }^{2}}\theta +2\sin \theta \cos \theta \right) \right] \\\ & \Rightarrow \dfrac{5}{2}\left[ 2{{\cos }^{2}}\theta +2\sin \theta \cos \theta +2{{\sin }^{2}}\theta -2\sin \theta \cos \theta \right] \\\ & \Rightarrow \dfrac{5}{2}\left[ 2\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right) \right] \\\ & \Rightarrow \dfrac{5}{2}\left( 2 \right) \\\ & \Rightarrow 5 \\\ \end{aligned}
Then determinant of A is
A=(et)5200 1cosθsinθsinθ+cosθ 12sinθ2cosθ  A=(et)(5) A=5et \begin{aligned} & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left| \begin{matrix} \dfrac{5}{2} & 0 & 0 \\\ 1 & -\cos \theta -\sin \theta & -\sin \theta +\cos \theta \\\ 1 & 2\sin \theta & -2\cos \theta \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|=\left( {{e}^{-t}} \right)\left( 5 \right) \\\ & \Rightarrow \left| A \right|=5{{e}^{-t}} \\\ \end{aligned}
So, determinant of matrix A is 5et5{{e}^{-t}}.
But as we know et0{{e}^{-t}}\ne 0 for all tRt\in R, A0\left| A \right|\ne 0.
So, as the determinant is not equal to zero inverse of A exists for all tRt\in R, that is A is invertible for all tRt\in R.
Hence, answer is Option C.

Note: We can also solve this problem without applying the row operations and finding the determinant for matrix A as,
A=etetcosθetsinθ etetcosθetsinθetsinθ+etcosθ et2etsinθ2etcosθ  A=etetcosθetsinθetsinθ+etcosθ 2etsinθ2etcosθ etcosθetetsinθ+etcosθ et2etcosθ   +etsinθetetcosθetsinθ et2etsinθ  \begin{aligned} & \Rightarrow \left| A \right|=\left| \begin{matrix} {{e}^{t}} & {{e}^{-t}}\cos \theta & {{e}^{-t}}\sin \theta \\\ {{e}^{t}} & -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ {{e}^{t}} & 2{{e}^{-t}}\sin \theta & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|={{e}^{t}}\left| \begin{matrix} -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ 2{{e}^{-t}}\sin \theta & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right|-{{e}^{-t}}\cos \theta \left| \begin{matrix} {{e}^{t}} & -{{e}^{-t}}\sin \theta +{{e}^{-t}}\cos \theta \\\ {{e}^{t}} & -2{{e}^{-t}}\cos \theta \\\ \end{matrix} \right| \\\ & \text{ }+{{e}^{-t}}\sin \theta \left| \begin{matrix} {{e}^{t}} & -{{e}^{-t}}\cos \theta -{{e}^{-t}}\sin \theta \\\ {{e}^{t}} & 2{{e}^{-t}}\sin \theta \\\ \end{matrix} \right| \\\ \end{aligned}
But, it a difficult way of solving and by using row operations we can simplify it easily.