Solveeit Logo

Question

Mathematics Question on Determinants

If Matrix A=[12 43]A = \begin{bmatrix}1&2\\\ 4&3\end{bmatrix} such that Ax=IAx = I, then X=X = _______

A

15[13 21]\frac{1}{5}\begin{bmatrix}1&3\\\ 2&-1\end{bmatrix}

B

15[42 41]\frac{1}{5}\begin{bmatrix}4&2\\\ 4&-1\end{bmatrix}

C

15[32 41]\frac{1}{5}\begin{bmatrix}-3&2\\\ 4&-1\end{bmatrix}

D

15[12 14]\frac{1}{5}\begin{bmatrix}-1&2\\\ -1&4\end{bmatrix}

Answer

15[32 41]\frac{1}{5}\begin{bmatrix}-3&2\\\ 4&-1\end{bmatrix}

Explanation

Solution

Given , A=[12 43]A=\begin{bmatrix}1&2\\\ 4&3\end{bmatrix}
and AX=IAX=I
X=A1I\Rightarrow X=A^{-1}I
X=A1\Rightarrow X=A^{-1}
Now, A1=1A[32 41]A^{-1}=\frac{1}{\left|A\right|}\begin{bmatrix}3&-2\\\ -4&1\end{bmatrix}
=138[32 41]=\frac{1}{3-8}\begin{bmatrix}3&-2\\\ -4&1\end{bmatrix}
=15[32 41]=\frac{1}{-5}\begin{bmatrix}3&-2\\\ -4&1\end{bmatrix}
=15[32 41]=\frac{1}{5}\begin{bmatrix}-3&2\\\ 4&-1\end{bmatrix}