Question
Mathematics Question on Matrices
If matrix A =[1 423] is such that AX = I, where I is 2 x 2 unit matrix, then X =
\frac {1}{5}$$\begin{bmatrix} 3 & 2 \\\ 4 & 1 \end{bmatrix}
\frac {1}{5}$$\begin{bmatrix} 3 & -2 \\\ -4 & 1 \end{bmatrix}
\frac {1}{5}$$\begin{bmatrix} -3 & -2 \\\ 4 & 1 \end{bmatrix}
\frac {1}{5}$$\begin{bmatrix} -3 & 2 \\\ 4 & -1 \end{bmatrix}
\frac {1}{5}$$\begin{bmatrix} -3 & 2 \\\ 4 & -1 \end{bmatrix}
Solution
We have A = [1 423] such that Ax=I
Since, A and I are of order 2×2. So, x will be a matrix of order 2×2
let x = [a cbd]
Ax = I
\begin{bmatrix} 1 & 2 \\\ 4 & 3 \end{bmatrix}$$\begin{bmatrix} a & b \\\ c & d \end{bmatrix} = [1 001]
[a+2c 4a+3cb+2d4b+3d] = [1 001]
a + 2c = 1 ....……….(i)
4a + 3c = 0 ......……(ii)
b + 2d = 0 .....…….(iii)
4b + 3d = 1 .....…..(iv)
On solving eq (i),(ii) ,(iii) and (iv) we get
a = -53, b = 52, c = 54 and d = -51
Substituting we get x = [−53 5452−51]
∴x = \frac {1}{5}$$\begin{bmatrix} -3 & 2 \\\ 4 & -1 \end{bmatrix}