Solveeit Logo

Question

Question: If , \(\mathrm x-\log48+3\log2=\frac13\log125-\log3\;\mathrm{and}\;\mathrm x=\log_{\mathrm m}20\), t...

If , xlog48+3log2=13log125log3  and  x=logm20\mathrm x-\log48+3\log2=\frac13\log125-\log3\;\mathrm{and}\;\mathrm x=\log_{\mathrm m}20, then the value of m will be-
(A). 6
(B). 5
(C). 10
(D). 20

Explanation

Solution

Hint: In this question, the properties of logarithmic functions will be used. Some of the properties are-
bloga=logab.....(1)logma=logalogm.....(2)logab=loga+logb.....(3)logab=c  is  the  same  as  ac=b....(4)\mathrm{bloga}=\mathrm{loga}^{\mathrm b}.....\left(1\right)\\\\\log_{\mathrm m}\mathrm a=\dfrac{\mathrm{loga}}{\mathrm{logm}}.....\left(2\right)\\\\\mathrm{logab}=\mathrm{loga}+\mathrm{logb}.....\left(3\right)\\\\\log_{\mathrm a}\mathrm b=\mathrm c\;\mathrm{is}\;\mathrm{the}\;\mathrm{same}\;\mathrm{as}\;\mathrm a^{\mathrm c}=\mathrm b....\left(4\right)
Also, the logarithm base is considered to be 10.

Complete step-by-step answer:
Using the above mentioned properties, we can easily solve the logarithmic equation-
xlog48+3log2=13log125log3xlog(24×3)+3log2=log12513log3Using  properties  (1)  and(3),x4log2log3+3log2=log5log3x=log5+log2=log10But  x=logm20  and  log10=1,logm20=1Using  property  (4),m1=20m=20\mathrm x-\log48+3\log2=\dfrac13\log125-\log3\\\\\mathrm x-\log\left(2^4\times3\right)+3\log2=\log125^\frac13-\log3\\\\\mathrm{Using}\;\mathrm{properties}\;\left(1\right)\;\mathrm{and}\left(3\right),\\\\\mathrm x-4\log2-\log3+3\log2=\log5-\log3\\\\\mathrm x=\log5+\log2=\log10\\\\\mathrm{But}\;\mathrm x=\log_{\mathrm m}20\;\mathrm{and}\;\log10=1,\\\\\log_{\mathrm m}20=1\\\\\mathrm{Using}\;\mathrm{property}\;\left(4\right),\\\\\mathrm m^1=20\\\\\mathrm m=20
Hence, the correct answer is D. 20

Note: In such problems first simplify the larger logarithms into log of prime numbers. This helps in solving the value of variables easily. The base of the log in the question is 10, and it can be manipulated according to the requirement of the question.