Solveeit Logo

Question

Question: If \(\mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{{\text{x}}^{\text{k}}}{\text...

If limx5xk - 5kx - 5=500\mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{{\text{x}}^{\text{k}}}{\text{ - }}{{\text{5}}^{\text{k}}}}}{{{\text{x - 5}}}} = 500 then find the positive integral value of k-
A)33
B)44
C)55
D)66

Explanation

Solution

Use the L’ Hospital Rule to solve the limit as the given function is in 00\dfrac{0}{0} indeterminate form when the value of x is substituted in the function. In this rule we differentiate the numerator and differentiate the denominator then put the limit.

Complete step-by-step answer:
Given function limx5xk - 5kx - 5=500\mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{{\text{x}}^{\text{k}}}{\text{ - }}{{\text{5}}^{\text{k}}}}}{{{\text{x - 5}}}} = 500
Here we have to find the value of k.
When we substitute the value of x in the function we get,
limx5xk - 5kx - 5=5k - 5k5 - 5=00\Rightarrow \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{{\text{x}}^{\text{k}}}{\text{ - }}{{\text{5}}^{\text{k}}}}}{{{\text{x - 5}}}} = \dfrac{{{5^{\text{k}}}{\text{ - }}{{\text{5}}^{\text{k}}}}}{{{\text{5 - 5}}}} = \dfrac{0}{0}
The function is in 00\dfrac{0}{0} indeterminate form as it does not give us the value of limit.
So we will use the L' Hospital rule. Here, we differentiate the numerator and differentiate the denominator separately, then put the limit. This means that the limit of indeterminate form is equal to the limit of derivative of the function.
We know that d(xn)dx=nxn - 1\dfrac{{d\left( {{{\text{x}}^{\text{n}}}} \right)}}{{dx}} = {\text{n}}{{\text{x}}^{{\text{n - 1}}}} . So on using this formula we get-
limx5xk - 5kx - 5=limx5kxk - 1 - 01=500\Rightarrow \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{{\text{x}}^{\text{k}}}{\text{ - }}{{\text{5}}^{\text{k}}}}}{{{\text{x - 5}}}} = \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{\text{k}}{{\text{x}}^{{\text{k - 1}}}}{\text{ - 0}}}}{{\text{1}}} = 500 as differentiation of constant is zero.
limx5kxk - 11=500\Rightarrow \mathop {{\text{lim}}}\limits_{{\text{x}} \to {\text{5}}} \dfrac{{{\text{k}}{{\text{x}}^{{\text{k - 1}}}}}}{1} = 500
Now, we will put the value of x in the equation.
k(5)k - 1=500\Rightarrow {\text{k}}{\left( 5 \right)^{{\text{k - 1}}}} = 500
Now we have to break 500500 into its factors to simplify the equation.
So we can write 500=4×125500 = 4 \times 125
On substituting this value in the equation we get-
k(5)k - 1=4×125\Rightarrow {\text{k}}{\left( 5 \right)^{{\text{k - 1}}}} = 4 \times 125
Now we can write 125=5×5×5=53125 = 5 \times 5 \times 5 = {5^3} and we have to put the value in form of xk - 1{{\text{x}}^{{\text{k - 1}}}} so that we can get the value of k. We can write 53=541{5^3} = {5^{4 - 1}} then substituting this value in the equation we get,
k(5)k - 1=4×541\Rightarrow {\text{k}}{\left( 5 \right)^{{\text{k - 1}}}} = 4 \times {5^{4 - 1}}
From the above equation we can see that value of k=55
Hence, the correct answer is ‘C’.

Note: L’ Hospital rule is used to solve the limits of indeterminate forms. The indeterminate forms are of the following types-00,,0,1,00,0,\dfrac{0}{0},\dfrac{\infty }{\infty },\dfrac{0}{{ - \infty }},{1^\infty },{0^0},{\infty ^0},\infty - \infty as we cannot determine its exact value. L’ Hospital rule converts the indeterminate form to such expression which can be easily evaluated by substituting the value of given limit.