Solveeit Logo

Question

Question: If \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sq...

If limx(x6+ax5+bx3cx+dx62x5+x3+1)=2\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) = 2 then
A) b=2 - 2
B) a=3 - 3
C) a=22
D) b=3 - 3

Explanation

Solution

Rationalize the given function and put 1x=0\dfrac{1}{x} = 0 in the obtained result because xx \to - \infty .Then sove to find the value of a and b.

Complete step-by-step answer:
Given function is limx(x6+ax5+bx3cx+dx62x5+x3+x+1)=2\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right) = 2
It is in \infty - \infty indeterminate form. So we can solve it by rationalizing.
On rationalizing the given function we get,
limx(x6+ax5+bx3cx+dx62x5+x3+1)×(x6+ax5+bx3cx+d+x62x5+x3+x+1)(x6+ax5+bx3cx+d+x62x5+x3+x+1)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) \times \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2 We know that a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) , On applying this in the above equation we get,
\Rightarrow limx((x6+ax5+bx3cx+d)2(x62x5+x3+x+1)2)(x6+ax5+bx3cx+d+x62x5+x3+x+1)=2\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} } \right)}^2} - {{\left( {\sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}^2}} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2
On solving we get,
limxx6+ax5+bx3cx+d(x62x5+x3+x+1)(x6+ax5+bx3cx+d+x62x5+x3+x+1)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - \left( {{x^6} - 2{x^5} + {x^3} + x + 1} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2
On multiplying the negative sign inside the bracket,
limxx6+ax5+bx3cx+dx6+2x5x3x1(x6+ax5+bx3cx+d+x62x5+x3+x+1)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - {x^6} + 2{x^5} - {x^3} - x - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2
On taking the coefficients of the same terms common we get,
limx(a+2)x5+(b1)x3(c+1)x+d1(x6+ax5+bx3cx+d+x62x5+x3+x+1)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2
On taking x6{x^6} common in the denominator we get,
limx(a+2)x5+(b1)x3(c+1)x+d1x3(1+ax+bx3cx5+dx6+12x+1x3+1x5+1x6)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2
On taking x3{x^3} common from numerator we get,
limxx3[(a+2)x2+(b1)(c+1)x2+d1x3]x3(1+ax+bx3cx5+dx6+12x+1x3+1x5+1x6)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^3}\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2
On simplifying we get,
limx[(a+2)x2+(b1)(c+1)x2+d1x3](1+ax+bx3cx5+dx6+12x+1x3+1x5+1x6)=2\Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2
Now since it is given that x1x=0x \to - \infty \Rightarrow \dfrac{1}{x} = 0
So all the values multiplied with 1x\dfrac{1}{x} in the denominator and numerator will be zero and for the limit to be finite as x tends to infinite the quantity a2=0a - 2 = 0 a=2 \Rightarrow a = 2 .So the limit will only exist for b1b - 1
Then on putting the values we get,
[(b1)](1+1)=2\Rightarrow \dfrac{{\left[ {\left( {b - 1} \right)} \right]}}{{\left( {\sqrt 1 + \sqrt 1 } \right)}} = 2
On simplifying we get,
b12=2 b1=4 b=5  \Rightarrow \dfrac{{b - 1}}{2} = 2 \\\ \Rightarrow b - 1 = 4 \\\ \Rightarrow b = 5 \\\

So, only option C is correct.

Note: Here we rationalize the function to make it easier to solve the limit as the function gives indeterminate form on putting the limit. Indeterminate forms are such forms which cannot be determined so we try to find another method to change the indeterminate form. Here we have used rationalization. In some questions, we use L’ Hospital rule which states that the limit of derivative of the given function is equal to the limit of indeterminate form.