Solveeit Logo

Question

Question: If \(\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^...

If limx(1+ax4x2)2x=e3\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}, then aa is equal to:
a)23 b)32 c)2 d)12  a)\,\dfrac{2}{3} \\\ b)\,\dfrac{3}{2} \\\ c)\,2 \\\ d)\,\dfrac{1}{2} \\\

Explanation

Solution

We are given limx(1+ax4x2)2x=e3\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}, we will firstly observe the intermediate form 1{1^\infty }in the given expression.Then using if f(x)1f(x) \to 1for xx \to \infty and g(x)g(x) \to \infty for xx \to \infty
limx(f(x))g(x)=elimx(f(x)1)g(x)\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}.Using these concept we try to solve the question.

Complete step-by-step answer:
limx(1+ax4x2)2x=e3(1)\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}\,\,\,\,\,\,\,\,\, \to (1)
Here firstly we try to solve L.H.S of (1)
Firstly,
We will consider limx(1+ax4x2)2x\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}and will try to solve this limit, we can observe that (1+ax4x2)1\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) \to 1 for xx \to \infty and for 2x2x \to \infty for xx \to \infty .
So for x,(1+ax4x2)2x1x \to \infty ,\,\,\,{\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} \to {1^\infty }
So we can say that 1{1^\infty } is an intermediate form.
And we know if f(x)1f(x) \to 1for xx \to \infty and g(x)g(x) \to \infty for xx \to \infty , then
limx(f(x))g(x)=elimx(f(x)1)g(x)(2)\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)
Now using (2) solve limx(1+ax4x2)2x\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}where we take f(x)=(1+ax4x2)f(x) = \left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) and g(x)=2xg(x) = 2x
So we get

limx(1+ax4x2)2x=elimx2x((1+ax4x2)1) =elimx2x((ax4x2)) =elimx2a4x limx(1+ax4x2)2x=e2a(3)  \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) - 1} \right)}} \\\ = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)} \right)}} \\\ = {e^{\mathop {\lim }\limits_{x \to \infty } 2a - \dfrac{4}{x}}} \\\ \mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{2a}}\,\,\,\,\,\,\,\,\,\, \to (3) \\\

Now from (1) we know that
limx(1+ax4x2)2x=e3\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}
Using (3) we get,
e3=e2a{e^3} = {e^{2a}}
Now comparing powers we get,
2a=3 a=32  2a = 3 \\\ a = \dfrac{3}{2} \\\

So, the correct answer is “Option B”.

Note: In this type of questions we always try to find out the intermediate form, if any. Also in (3), we used limx2x(ax4x2)=2a\mathop {\lim }\limits_{x \to \infty } 2x\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) = 2a because we know limx1x=0\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0 and limxy=y\mathop {\lim }\limits_{x \to \infty } y = y