Solveeit Logo

Question

Question: If \[\mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} = 500\] , then the positive i...

If limx5xk5kx5=500\mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} = 500 , then the positive integral value of is k
A. 3
B. 4
C. 5
D. 6

Explanation

Solution

We will get indeterminate form after putting the limits hence we will use L-Hospital rule, after using L-Hospital rule and differentiating both the numerator and denominator with respect to x we will get limx5kxk1=500\mathop {\lim }\limits_{x \to 5} k{x^{k - 1}} = 500 , now we will try to prime factorize 500 and compare LHS and RHS to get our final answer.

Complete step by step solution:
We have,
limx5xk5kx5\mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} … (1)

Now, we should first try to put the limits to solve it,

Putting limits in (1), we get
limx5xk5kx5=5k5k55=00\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} = \dfrac{{{5^k} - {5^k}}}{{5 - 5}} = \dfrac{0}{0}

Clearly, we got an indeterminate form
We know that whenever we get indeterminate forms we can apply L-Hospital rule in limx5xk5kx5\mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}}
According to L-Hospital Rule, a limit which evaluates to indeterminate form (i.e 00\dfrac{0}{0} or \dfrac{\infty }{\infty } ) can be represented as,
limxaf(x)g(x)=limxaf(x)g(x)\Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'(x)}}{{g'(x)}} … (2)

So, numerator and denominator of (1) are
Numerator =f(x)=(xk5k) = f\left( x \right) = ({x^k} - {5^k}) … (3)
Denominator =g(x)=(x5) = g\left( x \right) = (x - 5) … (4)

Now differentiating (3) and (4) with respect to x, we get
fx=ddx(xk5k)f^{‘}{x}=\dfrac{d}{dx} \left( x^k - 5^k \right)
SInce =5k=5^k is a constant with respect to x. Hence
fx=ddx(xk)f^{‘}{x}=\dfrac{d}{dx} \left( x^k \right)
We know that differentiation of xnx^n is nxn1nx^{n-1}. Using the same
fx=kxk1f^{‘}{x}= kx^{k-1} ....(5)
Now for the denominator we have
gx=x5g^{‘}{x}=x-5
Differentiating g(x) with respect to x, we get
gx=ddx(x5)g^{‘}{x}=\dfrac{d}{dx} \left( x - 5 \right)
Since, 5 is a constant and we know that dxdx\dfrac{{dx}}{{dx}} is 1, we get
gx=1g^{‘}{x}=1 … (6)
Now, put (5) and (6) in (2) we get
limx5xk5kx5=limx5kxk1\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \dfrac{{k{x^k}}}{1}
Now, put value of limit to solve it, we get
limx5kxk1=k×5k1\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{k{x^k}}}{1} = k \times {5^{k - 1}}
Also, we are given
limx5xk5kx5=500\Rightarrow \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^k} - {5^k}}}{{x - 5}} = 500
We get,
k×5k1=500\Rightarrow k \times {5^{k - 1}} = 500 … (7)
Now to find the value of k, we can prime factorise 500 and compare LHS with RHS,
500=4×5×5×5\Rightarrow 500 = 4 \times 5 \times 5 \times 5
Hence, we get
500=4×53\Rightarrow 500 = 4 \times {5^3} … (8)
Comparing (7) with (8), we get
k×5k1=4×53\Rightarrow k \times {5^{k - 1}} = 4 \times {5^3}
We know that 4=314 = 3 - 1 , Hence
k×5k1=4×541\Rightarrow k \times {5^{k - 1}} = 4 \times {5^{4 - 1}} … (9)
Clearly, from (9), we get
k=4\Rightarrow k = 4

Hence, the correct option is B.

Note:
In this question, differentiate with respect to x because we can easily get confused here and may differentiate with respect to k.
This Question has a direct formulae application (Alternate way).
If we come across a limit where,
limxaxnanxa\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} ,
Then the direct answer to this limit is
limxaxnanxa=n×xn1\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n \times {x^{n - 1}}
This can be remembered and it will surely help in other similar questions.