Solveeit Logo

Question

Question: If \[\mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4...

If limx2tan(x2)x2+(k2)x2kx24x+4=5\mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4x + 4}} = 5 then kk is equal to
A. 11
B. 22
C. 33
D. 00

Explanation

Solution

Here we solve the terms in the bracket by converting both numerator and denominator in form of their factors and then cancelling out the same terms to obtain a simpler form. Then we apply the limit to the fraction by breaking the fraction into multiplication of two fractions.

  • Limit of a function means the value of the function as it approaches the limit, i.e. limxaf(x)=f(a)\mathop {\lim }\limits_{x \to a} f(x) = f(a)
  • limxp(xy)=limxpx×limxpy\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y
  • limx0tanxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1

Complete step-by-step answer:
We have to find the value of k such that limx2tan(x2)x2+(k2)x2kx24x+4=5\mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4x + 4}} = 5.
First we write the denominator of the fraction in form of its factors. We can write
x24x+4=(x)2+(2)22(2)(x){x^2} - 4x + 4 = {(x)^2} + {(2)^2} - 2(2)(x)
This is of the form a2+b22ab{a^2} + {b^2} - 2ab
By comparing the above equation to (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab, we can see that the value of a=x,b=2a = x,b = 2.
x24x+4=(x2)2{x^2} - 4x + 4 = {(x - 2)^2} … (1)
Now we solve the numerator of the fraction.
We have tan(x2)x2+(k2)x2k\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} as the numerator of the fraction.
Opening the brackets by multiplying the terms we get

tan(x2)x2+(k2)x2k=tan(x2)x2+kx2x2k tan(x2)x2+(k2)x2k=tan(x2)x22x+kx2k  \Rightarrow \tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} = \tan (x - 2)\\{ {x^2} + kx - 2x - 2k\\} \\\ \Rightarrow \tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} = \tan (x - 2)\\{ {x^2} - 2x + kx - 2k\\} \\\

Now take x common from the first two terms and k common from the last two terms in the bracket.
tan(x2)x2+(k2)x2k=tan(x2)x(x2)+k(x2)\Rightarrow \tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} = \tan (x - 2)\\{ x(x - 2) + k(x - 2)\\}
Pairing the factors we get
tan(x2)x2+(k2)x2k=tan(x2)(x2)(x+k)\Rightarrow \tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} = \tan (x - 2)\\{ (x - 2)(x + k)\\} … (2)
Substituting equation 1 and 2 in given equation, we get
tan(x2)(x2)(x+k)(x2)2=tan(x2)(x2)×(x2)(x+k)(x2)\Rightarrow \dfrac{{\tan (x - 2)\\{ (x - 2)(x + k)\\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \dfrac{{(x - 2)(x + k)}}{{(x - 2)}}
Cancel out the same terms from numerator and denominator.
tan(x2)(x2)(x+k)(x2)2=tan(x2)(x2)×(x+k)\Rightarrow \dfrac{{\tan (x - 2)\\{ (x - 2)(x + k)\\} }}{{{{(x - 2)}^2}}} = \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)
Taking limit on both sides we get
limx2tan(x2)x2+(k2)x2kx24x+4=limx2tan(x2)(x2)×(x+k)\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times (x + k)
We know that we can separate the limits as limxp(xy)=limxpx×limxpy\mathop {\lim }\limits_{x \to p} (xy) = \mathop {\lim }\limits_{x \to p} x \times \mathop {\lim }\limits_{x \to p} y
limx2tan(x2)x2+(k2)x2kx24x+4=limx2tan(x2)(x2)×limx2(x+k)\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4x + 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} \times \mathop {\lim }\limits_{x \to 2} (x + k) … (3)
Now we know limx0tanxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1
So, we can apply this property to the first term because x2=x20x \to 2 = x - 2 \to 0 and as the function is the same as the limit we can apply the property.
limx2tan(x2)(x2)=1\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)}}{{(x - 2)}} = 1
Also, limx2(x+k)=(k+2)\mathop {\lim }\limits_{x \to 2} (x + k) = (k + 2)
Substituting the values in equation (3) we get
limx2tan(x2)x2+(k2)x2kx24x+4=1×(k+2)=k+2\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{\tan (x - 2)\\{ {x^2} + (k - 2)x - 2k\\} }}{{{x^2} - 4x + 4}} = 1 \times (k + 2) = k + 2
Now from the statement of the question we know the value of LHS is equal to 5.

k+2=5 k=52 k=3  \Rightarrow k + 2 = 5 \\\ \Rightarrow k = 5 - 2 \\\ \Rightarrow k = 3 \\\

So, the correct answer is “Option C”.

Note: Students are likely to make mistakes while calculating the limit of the tan function and might substitute the value of x as 2 in the fraction which will give us the answer 0 which is wrong. Keep in mind for fractions like tanxx,sinxx\dfrac{{\tan x}}{x}, \dfrac{{\sin x}}{x} we always use this way of finding the limit.