Solveeit Logo

Question

Question: If \(\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1...

If limx0(1x3)(11+x1+ax1+bx)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) exist, find the values of a,  ba,\;b. How can I solve this?

Explanation

Solution

Hint : We can calculate that for limx0\mathop {\lim }\limits_{x \to 0} the given expression becomes 00\dfrac{0}{0}. Since this is an indeterminate form, we have to simplify the expression such that we can find a finite limit of the expression for x0x \to 0. We can use rationalizing of the denominator and then using binomial expansion for the term 11+x\dfrac{1}{{\sqrt {1 + x} }} to simplify the expression.

Complete step by step solution:
We have been given that the limit limx0(1x3)(11+x1+ax1+bx)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) exists. The value of this limit is not given. If we put x=0x = 0 in the expression we will get,
limx0(1x3)(11+x1+ax1+bx)=(10)(11+01+01+0)=(10)(11)=00\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {\dfrac{1}{{\sqrt {1 + 0} }} - \dfrac{{1 + 0}}{{1 + 0}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {1 - 1} \right) = \dfrac{0}{0}
Since 00\dfrac{0}{0} is an indeterminate form, we have to simplify the expression to get a finite value of the limit.
First we rationalize the term 11+x\dfrac{1}{{\sqrt {1 + x} }} by multiplying by 1+x\sqrt {1 + x} in the numerator and the denominator.

limx0(1x3)(11+x1+ax1+bx)=limx0(1x3)((11+x×1+x1+x)1+ax1+bx) =limx0(1x3)(1+x1+x1+ax1+bx)  \Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\left( {\dfrac{1}{{\sqrt {1 + x} }} \times \dfrac{{\sqrt {1 + x} }}{{\sqrt {1 + x} }}} \right) - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\\

We can simplify further as,

limx0(1x3)(1+x1+x1+ax1+bx)=limx0(1x3)((1+bx)1+x(1+ax)(1+x)(1+x)(1+bx)) =limx0((1+bx)(1+x)12(1+ax+x+ax2)x3(1+x+bx+bx2))   \Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\left( {1 + bx} \right)\sqrt {1 + x} - \left( {1 + ax} \right)\left( {1 + x} \right)}}{{\left( {1 + x} \right)\left( {1 + bx} \right)}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right){{\left( {1 + x} \right)}^{\dfrac{1}{2}}} - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;

Now we can use the binomial expansion formula to expand (1+x)12{\left( {1 + x} \right)^{\dfrac{1}{2}}}. The binomial formula is given as,
(1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+  ...  {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \;...\;\infty
Thus,
(1+x)12=1+12x+12(121)2!x2+12(121)(122)3!x3+  ...   (1+x)12=1+x2x28+x316+...   {\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}x + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)}}{{2!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)\left( {\dfrac{1}{2} - 2} \right)}}{{3!}}{x^3} + \;...\;\infty \\\ \Rightarrow {\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ... \;
Using this value in the limit we get,

=limx0((1+bx)(1+x2x28+x316+...)(1+ax+x+ax2)x3(1+x+bx+bx2)) =limx0((1+x2x28+x316+...)+(bx+bx22bx38+bx416+...)(1+ax+x+ax2)x3(1+x+bx+bx2)) =limx0((1+x2x28+x316+...)x3+(bx+bx22bx38+bx416+...)x3(ax+x+ax2)x3(1+x+bx+bx2)) =limx0((1x3+12x218x+116+...)+(bx2+b2xb8+bx16+...)(1x3+ax2+1x2+ax)(1+x+bx+bx2))  = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right)\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) + \left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right)}}{{{x^3}}} + \dfrac{{\left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right)}}{{{x^3}}} - \dfrac{{\left( {ax + x + a{x^2}} \right)}}{{{x^3}}}}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\\

We can further simplify this as,

l=limx0((1x3+12x218x+116+...)+(bx2+b2xb8+bx16+...)(1x3+ax2+1x2+ax)(1+x+bx+bx2)) l=limx0(1x2(12a+b1)+1x(b218a)+(116+...b8+bx16+...)(1+x+bx+bx2))   l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\\ \Rightarrow l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{1}{{{x^2}}}\left( {\dfrac{1}{2} - a + b - 1} \right) + \dfrac{1}{x}\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) + \left( {\dfrac{1}{{16}} + ... - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;

Now, in this simplified form if we put x=0x = 0 we still get indeterminate terms in the numerator.
The coefficient of 1x2\dfrac{1}{{{x^2}}} and 1x\dfrac{1}{x} has to be equal to zero for the limit to exist as a finite number.
Thus,
(12a+b1)=0\left( {\dfrac{1}{2} - a + b - 1} \right) = 0 and (b218a)=0\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0

(12a+b1)=0 ba=12   \left( {\dfrac{1}{2} - a + b - 1} \right) = 0 \\\ \Rightarrow b - a = \dfrac{1}{2} \;

And,

(b218a)=0 b2a=14   \left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0 \\\ \Rightarrow b - 2a = \dfrac{1}{4} \;

We can solve this as,

(ba)(b2a)=1214 a=14   \left( {b - a} \right) - \left( {b - 2a} \right) = \dfrac{1}{2} - \dfrac{1}{4} \\\ \Rightarrow a = \dfrac{1}{4} \;

And,

ba=12 b=12+a=12+14=34  b - a = \dfrac{1}{2} \\\ \Rightarrow b = \dfrac{1}{2} + a = \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4} \\\

Hence the required value is a=14a = \dfrac{1}{4} and b=34b = \dfrac{3}{4} .
So, the correct answer is “ a=14a = \dfrac{1}{4} and b=34b = \dfrac{3}{4} ”.

Note : Since the limit that we were getting after putting x=0x = 0 in the given expression was indeterminate, we simplified the expression such that the indeterminate form was eliminated. We can also use L’Hospital’s rule when the limit is in the indeterminate form.