Solveeit Logo

Question

Question: If \[\mathop a\limits^ \wedge \] , \[\mathop b\limits^ \wedge \] and \[\mathop c\limits^ \wedge \] a...

If a\mathop a\limits^ \wedge , b\mathop b\limits^ \wedge and c\mathop c\limits^ \wedge are unit vectors satisfying ab2+bc2+ca2=9{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9 then 2a+5b+5c\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right| is
A 3
B 4
C 5
D 6

Explanation

Solution

Hint : A vector that has a magnitude of 1 is a unit vector, any vector can become a unit vector by dividing it by the magnitude of the given vector, and if a\mathop a\limits^ \wedge , b\mathop b\limits^ \wedge and c\mathop c\limits^ \wedge are unit vectors satisfying ab2+bc2+ca2=9{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9 , then we can expand the terms using the formula of (ab)2{\left( {a - b} \right)^2} and then simplify for 2a+5b+5c\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right| .
Formula used:
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
(bc)2=b2+c22bc{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc
(ca)2=c2+a22ca{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca
In which a, b, c are unit vectors.

Complete step-by-step answer :
Let us write the given data:
ab2+bc2+ca2=9{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9 (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
We can see that the given vector is of the form (ab)2{\left( {a - b} \right)^2} , hence let us apply the expansion of that formula as
We know that,
, (bc)2=b2+c22bc{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc and (ca)2=c2+a22ca{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca
Hence, applying to the given vectors:
ab2+bc2+ca2=9{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9
\Rightarrow a2+b22ab+b2+c22bc+c2+a22ca=9{\left| {\mathop a\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge } \right|^2} - 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + {\left| {\mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge } \right|^2} - 2\mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + {\left| {\mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop a\limits^ \wedge } \right|^2} - 2\mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge = 9
Now taking the common terms we get the equation as:
2(a2+b2+c2)2(ab+bc+ca)=92\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9
3(a2+b2+c2)(a2+b2+c2+2(ab+bc+ca)=9)3\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - \left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2} + 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9} \right)
Since, a, b, c are unit vectors we get
3(3)a+b+c2=93\left( 3 \right) - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9
9a+b+c2=99 - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9
Hence, we get
a+b+c=0\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right| = 0
\Rightarrow a+b+c=0\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge = 0 and b+c=a\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge
Hence, we get
(a+b+c)=0\left( {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right) = 0
Now, we need to find the vector 2a+5b+5c\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right|
We can combine the common terms from the given vector as:
2a+5b+5c=2a+5(b+c)\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right| = \left| {2\mathop a\limits^ \wedge + 5\left( {\mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right)} \right|
We know that, since b+c=a\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge we get
= 2a+5(a)\left| {2\mathop a\limits^ \wedge + 5\left( { - \mathop a\limits^ \wedge } \right)} \right|
\Rightarrow 3a=3a\left| { - 3\mathop a\limits^ \wedge } \right| = 3\left| {\mathop a\limits^ \wedge } \right|
= 3×13 \times 1
= 33
Therefore, option A is the right answer.
So, the correct answer is “Option A”.

Note : A vector is a quantity that has both magnitudes, as well as direction. Unit vectors are usually determined to form the base of a vector space. Every vector in the space can be expressed as a linear combination of unit vectors.
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude and these unit vectors are commonly used to indicate direction, with a scalar coefficient providing the magnitude. A unit vector contains directional information and if you multiply a positive scalar by a unit vector, then you produce a vector with magnitude equal to that scalar in the direction of the unit vector.