Solveeit Logo

Question

Question: If \( \mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j \) ...

If a=i^+2j^+k^,b=2i^+j^\mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j and c=3i^4j^5k^\mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k then find a unit vector perpendicular to both of the vectors (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) .

Explanation

Solution

In this question we have been given three vectors a,b,c\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to we need to find a unit vector which is perpendicular to (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) . For that we will find the value of the vector (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) as they are perpendicular we will find their cross product, and then we will use the formula: ((ab)×(cb)(ab)×(cb))\left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right) to find the unit vector.

Complete step-by-step answer:
We have been provided with three vectors a=i^+2j^+k^,b=2i^+j^\mathop a\limits^ \to = \hat i + 2\hat j + \hat k,\mathop b\limits^ \to = 2\hat i + \hat j and c=3i^4j^5k^\mathop c\limits^ \to = 3\hat i - 4\hat j - 5\hat k ,
To find a unit vector which is perpendicular to (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) , firstly we need to find (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to )
So, we can compute as (ab)=i^+2j^+k^(2i^+j^)(\mathop a\limits^ \to - \mathop b\limits^ \to ) = \hat i + 2\hat j + \hat k - (2\hat i + \hat j)
Simplifying, we will get (ab)=i^+j^+k^(\mathop a\limits^ \to - \mathop b\limits^ \to ) = - \hat i + \hat j + \hat k
Similarly, we will find the value of (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) ,
So, we get (cb)=3i^4j^5k^(2i^+j^)(\mathop c\limits^ \to - \mathop b\limits^ \to ) = 3\hat i - 4\hat j - 5\hat k - (2\hat i + \hat j)
Simplifying, we have (cb)=i^5j^5k^(\mathop c\limits^ \to - \mathop b\limits^ \to ) = \hat i - 5\hat j - 5\hat k
Now as we need to find the unit vector which is perpendicular to both (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) ,
For that we need to find their cross products,
So, we can write it as
(\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = \left| {\left( {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ { - 1}&1&1 \\\ 1&{ - 5}&{ - 5} \end{array}} \right)} \right|
Now we will solve the determinant: (ab)×(cb)=(5+5)i^(51)j^+(51)k^(\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = ( - 5 + 5)\hat i - (5 - 1)\hat j + (5 - 1)\hat k
From this we will get (ab)×(cb)=4j^+4k^(\mathop a\limits^ \to - \mathop b\limits^ \to ) \times (\mathop c\limits^ \to - \mathop b\limits^ \to ) = - 4\hat j + 4\hat k
Now, for finding the unit vector we will be using the formula: ((ab)×(cb)(ab)×(cb))\left( {\dfrac{{\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)}}{{\left| {\left( {\mathop a\limits^ \to - \mathop b\limits^ \to } \right) \times \left. {\left( {\mathop c\limits^ \to - \mathop b\limits^ \to } \right)} \right|} \right.}}} \right)
Now, we will be keeping the values then it becomes: 4j^+4k^42=j^+k^2\dfrac{{ - 4\hat j + 4\hat k}}{{4\sqrt 2 }} = \dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }}
So, j^+k^2\dfrac{{ - \hat j + \hat k}}{{\sqrt 2 }} is the required vector.

Note: In this question, be careful while calculating the determinant, about the negative and positive signs. As we need to find a unit vector which is perpendicular to (ab)(\mathop a\limits^ \to - \mathop b\limits^ \to ) and (cb)(\mathop c\limits^ \to - \mathop b\limits^ \to ) , we should calculate the cross product and not the dot product.