Solveeit Logo

Question

Question: If \(\mathbf{x =}\int_{\mathbf{0}}^{\mathbf{y}}\frac{\mathbf{1}}{\sqrt{\mathbf{1 + 4}\mathbf{t}^{\ma...

If x=0y11+4t2dt\mathbf{x =}\int_{\mathbf{0}}^{\mathbf{y}}\frac{\mathbf{1}}{\sqrt{\mathbf{1 + 4}\mathbf{t}^{\mathbf{2}}}}\mathbf{dt}, then d2ydx2\frac{d^{2}y}{dx^{2}} is

A

2y

B

4y

C

8y

D

6 y

Answer

4y

Explanation

Solution

x=0y11+4t2dtx = \int_{0}^{y}{\frac{1}{\sqrt{1 + 4t^{2}}}dt}dxdy=11+4y2\frac{dx}{dy} = \frac{1}{\sqrt{1 + 4y^{2}}}dydx=1+4y2\frac{dy}{dx} = \sqrt{1 + 4y^{2}}

d2ydx2=4y1+4y2dydx\frac{d^{2}y}{dx^{2}} = \frac{4y}{\sqrt{1 + 4y^{2}}}\frac{dy}{dx}d2ydx2=4y1+4y21+4y2=4y\frac{d^{2}y}{dx^{2}} = \frac{4y}{\sqrt{1 + 4y^{2}}} \cdot \sqrt{1 + 4y^{2}} = 4y