Solveeit Logo

Question

Question: If \(\mathbf{\sin}^{\mathbf{10}}\mathbf{x}\mathbf{+}\mathbf{\cos}^{\mathbf{10}}\mathbf{x}\mathbf{=}\...

If sin10x+cos10x=2916cos42x.\mathbf{\sin}^{\mathbf{10}}\mathbf{x}\mathbf{+}\mathbf{\cos}^{\mathbf{10}}\mathbf{x}\mathbf{=}\frac{\mathbf{29}}{\mathbf{16}}\mathbf{\cos}^{\mathbf{4}}\mathbf{2}\mathbf{x.} then x=x =

A

x=nπ4x = \frac{n\pi}{4}

B

x=nπ4+π8x = \frac{n\pi}{4} + \frac{\pi}{8}

C

x=nπ4+π3x = \frac{n\pi}{4} + \frac{\pi}{3}

D

None of these

Answer

x=nπ4+π8x = \frac{n\pi}{4} + \frac{\pi}{8}

Explanation

Solution

Using half-angle formulae we can represent the given equation in the form,

(1cos2x2)5+(1+cos2x2)5=2916cos42x\left( \frac{1 - \cos 2x}{2} \right)^{5} + \left( \frac{1 + \cos 2x}{2} \right)^{5} = \frac{29}{16}\cos^{4}2x Put cos2x=t\cos 2 x = t (1t2)5+(1+t2)5=2916t4\left( \frac{1 - t}{2} \right)^{5} + \left( \frac{1 + t}{2} \right)^{5} = \frac{29}{16}t^{4} \Rightarrow 24t410t21=024t^{4} - 10t^{2} - 1 = 0 whose only

real root is, t2=12.t^{2} = \frac{1}{2}.

\therefore cos22x=12\cos^{2}2x = \frac{1}{2} \Rightarrow 1+cos4x=11 + \cos 4x = 1 \Rightarrow cos4x=0\cos 4x = 0

4x=(2n+1)π2\Rightarrow 4x = (2n + 1)\frac{\pi}{2} \Rightarrow x=nπ4+π8x = \frac{n\pi}{4} + \frac{\pi}{8}; nn \inI