Question
Question: If \(\mathbf{r}.\mathbf{i} = \mathbf{r}.\mathbf{j} = \mathbf{r}.\mathbf{k}\) and \(|\mathbf{r}| = 3,...
If r.i=r.j=r.k and ∣r∣=3, then r=
A
±3(i+j+k)
B
±31(i+j+k)
C
±31(i+j+k)
D
±3(i+j+k)
Answer
±3(i+j+k)
Explanation
Solution
Let r=xi+yj+zk. Since r.i=r.j=r.k
⇒x=y=z .....(i)
Also ∣r∣=x2+y2+z2=3⇒x=±3, {By (i)}
Hence the required vector r=±3(i+j+k).
Trick : As the vector ±3(i+j+k) satisfies both the conditions.