Solveeit Logo

Question

Question: If \(\mathbf{i},\mathbf{j},\mathbf{k}\) are unit orthonormal vectors and **a** is a vector, if \(\ma...

If i,j,k\mathbf{i},\mathbf{j},\mathbf{k} are unit orthonormal vectors and a is a vector, if a×r=j,\mathbf{a} \times \mathbf{r} = \mathbf{j}, then a . r is

A

0

B

1

C

– 1

D

Arbitrary scalar

Answer

Arbitrary scalar

Explanation

Solution

Since a×r2+a.r2=a2r2|\mathbf{a} \times \mathbf{r}|^{2} + |\mathbf{a}.\mathbf{r}|^{2} = |\mathbf{a}|^{2}|\mathbf{r}|^{2}

j2+(a.r)2=a2r2(a.r)=±a2r21\Rightarrow |\mathbf{j}|^{2} + (\mathbf{a}.\mathbf{r})^{2} = |\mathbf{a}|^{2}|\mathbf{r}|^{2} \Rightarrow (\mathbf{a}.\mathbf{r}) = \pm \sqrt{|\mathbf{a}|^{2}|\mathbf{r}|^{2} - 1}

This shows that a.r\mathbf{a}.\mathbf{r} depends on r|\mathbf{r}| for given a.\mathbf{a}.

Hence a.r\mathbf{a}.\mathbf{r} is arbitrary scalar.