Solveeit Logo

Question

Question: If \(\mathbf{a},\mathbf{b},\mathbf{c}\) are non-coplanar vectors and \(\mathbf{d} = \lambda\mathbf{a...

If a,b,c\mathbf{a},\mathbf{b},\mathbf{c} are non-coplanar vectors and d=λa+μb+νc,\mathbf{d} = \lambda\mathbf{a} + \mu\mathbf{b} + \nu\mathbf{c}, then λ\lambda is equal to

A

[dbc][bac]\frac{\lbrack\mathbf{dbc}\rbrack}{\lbrack\mathbf{bac}\rbrack}

B

[bcd][bca]\frac{\lbrack\mathbf{bcd}\rbrack}{\lbrack\mathbf{bca}\rbrack}

C

[bdc][abc]\frac{\lbrack\mathbf{bdc}\rbrack}{\lbrack\mathbf{abc}\rbrack}

D

[cbd][abc]\frac{\lbrack\mathbf{cbd}\rbrack}{\lbrack\mathbf{abc}\rbrack}

Answer

[bcd][bca]\frac{\lbrack\mathbf{bcd}\rbrack}{\lbrack\mathbf{bca}\rbrack}

Explanation

Solution

Since d=λa+μb+νcd = \lambda a + \mu b + \nu c

d.(b×c)=λa.(b×c)+μb.(b×c)+μc.(b×c)d.(b \times c) = \lambda a.(b \times c) + \mu b.(b \times c) + \mu c.(b \times c)

=λ[abc]= \lambda\lbrack abc\rbrack

λ=[dbc][abc]=[bcd][bca]\lambda = \frac{\lbrack dbc\rbrack}{\lbrack abc\rbrack} = \frac{\lbrack bcd\rbrack}{\lbrack bca\rbrack}.