Solveeit Logo

Question

Question: If \(\mathbf{a} \times \mathbf{b} = \mathbf{c},\mathbf{b} \times \mathbf{c} = \mathbf{a}\) and a, b,...

If a×b=c,b×c=a\mathbf{a} \times \mathbf{b} = \mathbf{c},\mathbf{b} \times \mathbf{c} = \mathbf{a} and a, b, c be moduli of the vectors a, b, c respectively, then

A

a=1,b=ca = 1,b = c

B

c=1,a=1c = 1,a = 1

C

b=2,c=2ab = 2,c = 2a

D

b=1,c=ab = 1,c = a

Answer

b=1,c=ab = 1,c = a

Explanation

Solution

a=b×c\mathbf{a} = \mathbf{b} \times \mathbf{c} and a×b=c\mathbf{a} \times \mathbf{b} = \mathbf{c}

\therefore a is perpendicular to both b and c\mathbf{c} and c\mathbf{c} is perpendicular to both a\mathbf{a} and b.

a,b,c\mathbf{a},\mathbf{b},\mathbf{c}are mutually perpendicular

Now, a=b×c=b×(a×b)=(b.b)a(b.a)b\mathbf{a} = \mathbf{b} \times \mathbf{c} = \mathbf{b} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{b}.\mathbf{b})\mathbf{a} - (\mathbf{b}.\mathbf{a})\mathbf{b}

or a=b2a(b.a)b=b2a\mathbf{a} = b^{2}\mathbf{a} - (\mathbf{b}.\mathbf{a})\mathbf{b} = b^{2}\mathbf{a}, {ab}\left\{ \because\mathbf{a}\bot\mathbf{b} \right\}

1=b2\Rightarrow 1 = b^{2}, c=a×b=absin90n^\therefore\mathbf{c} = \mathbf{a} \times \mathbf{b} = ab\sin 90{^\circ}\widehat{\mathbf{n}}

Take moduli of both sides, then c=abc = ab, but b=1c=ab = 1 \Rightarrow c = a.