Solveeit Logo

Question

Question: If \(\mathbf{a} \times (\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \ma...

If a×(b+c)+b×(c+a)+c×(a+b)=\mathbf{a} \times (\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \mathbf{c} \times (\mathbf{a} + \mathbf{b}) =, c=(2,2,4)\mathbf{c} = (2, - 2,4) and i is the unit vector in the x-direction, then (a2b+3c).i=(a - 2b + 3c).i =

A

11

B

15

C

18

D

36

Answer

11

Explanation

Solution

a=(1,1,2),b=(2,3,5),c=(2,2,4)\mathbf{a} = (1, - 1,2),\mathbf{b} = ( - 2,3,5),\mathbf{c} = (2, - 2,4)

So, a=(1,1,2)ij+2k;b=(2,3,5)2i+3j+5k\mathbf{a} = (1, - 1,2) \equiv \mathbf{i} - \mathbf{j} + 2\mathbf{k};\mathbf{b} = ( - 2,3,5) \equiv - 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}

and c=(2,2,4)2i2j+4k\mathbf{c} = (2, - 2,4) \equiv 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}

a2b+3c=(ij+2k)2(2i+3j+5k)+3(2i2j+4k)\Rightarrow \mathbf{a} - 2\mathbf{b} + 3\mathbf{c} = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - 2( - 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) + 3(2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k})

=11i13j+4k= 11\mathbf{i} - 13\mathbf{j} + 4\mathbf{k} and (a2b+3c).i=11.(\mathbf{a} - 2\mathbf{b} + 3\mathbf{c}).\mathbf{i} = 11.