Solveeit Logo

Question

Question: If \(\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k},\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 5\mat...

If a=i+j+k,b=i+3j+5k\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k},\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k} and c=7i+9j+11k\mathbf{c} = 7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}, then the area of the parallelogram having diagonals a+b\mathbf{a} + \mathbf{b} and b+c\mathbf{b} + \mathbf{c} is

A

464\sqrt{6}

B

1221\frac{1}{2}\sqrt{21}

C

62\frac{\sqrt{6}}{2}

D

6\sqrt{6}

Answer

464\sqrt{6}

Explanation

Solution

Area of the parallelogram with diagonals a+b\mathbf{a} + \mathbf{b} and b+c\mathbf{b} + \mathbf{c} = 12(a+b)×(b+c)\frac{1}{2}|(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})|

=12{(i+j+k)+(i+3j+5k)}×{(i+3j+5k)+(7i+9j+11k)}\frac{1}{2}|\{(\mathbf{i} + \mathbf{j} + \mathbf{k}) + (\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})\} \times \{(\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}) + (7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k})\}|

=12{(2i+4j+6k)×(8i+12j+16k)}\frac{1}{2}|\{(2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \times (8\mathbf{i} + 12\mathbf{j} + 16\mathbf{k})\}|

= 4(i+2j+3k)×(2i+3j+4k)4|(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})|

= 4ijk123234=4i+2jk4|\left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{matrix} \right|| = 4| - \mathbf{i} + 2\mathbf{j} - \mathbf{k}| = 464\sqrt{6}