Solveeit Logo

Question

Question: If \(\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k},\mathbf{a}.\mathbf{b} = 1\) and\(\mathbf{a} \...

If a=i+j+k,a.b=1\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k},\mathbf{a}.\mathbf{b} = 1 anda×b=jk\mathbf{a} \times \mathbf{b} = \mathbf{j} - \mathbf{k}, then b=\mathbf{b} =

A

i\mathbf{i}

B

ij+k\mathbf{i} - \mathbf{j} + \mathbf{k}

C

2jk2\mathbf{j} - \mathbf{k}

D

2i2\mathbf{i}

Answer

i\mathbf{i}

Explanation

Solution

Let b=b1i+b2j+b3k\mathbf{b} = b_{1}\mathbf{i} + b_{2}\mathbf{j} + b_{3}\mathbf{k}

Now, jk=a×b=ijk111b1b2b3\mathbf{j} - \mathbf{k} = \mathbf{a} \times \mathbf{b} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ b_{1} & b_{2} & b_{3} \end{matrix} \right|

b3b2=0,b1b3=1,b2b1=1b_{3} - b_{2} = 0,b_{1} - b_{3} = 1,b_{2} - b_{1} = - 1b3=b2,b1=b2+1b_{3} = b_{2},b_{1} = b_{2} + 1

Now, a.b=1\mathbf{a}.\mathbf{b} = 1b1+b2+b3=1b_{1} + b_{2} + b_{3} = 13b2+1=13b_{2} + 1 = 1b2=0b_{2} = 0

b1=1,b3=0b_{1} = 1,b_{3} = 0. Thus b=i\mathbf{b} = \mathbf{i}