Solveeit Logo

Question

Question: If \(\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k},\mathbf{b} = - \mathbf{i} + 2\mathbf{j} + \...

If a=i+2j+3k,b=i+2j+k\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k},\mathbf{b} = - \mathbf{i} + 2\mathbf{j} + \mathbf{k} and c=3i+j,\mathbf{c} = 3\mathbf{i} + \mathbf{j}, then the unit vector along its resultant is

A

3i+5j+4k3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}

B

3i+5j+4k50\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{50}

C

3i+5j+4k52\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}

D

None of these

Answer

3i+5j+4k52\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}

Explanation

Solution

R=3i+5j+4kR^=3i+5j+4k52.\mathbf{R} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} \Rightarrow \widehat{\mathbf{R}} = \frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}.