Solveeit Logo

Question

Question: If \(\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0},\) then which relation is correct...

If a+b+c=0,\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}, then which relation is correct

A

a=b=c=0\mathbf{a} = \mathbf{b} = \mathbf{c} = \mathbf{0}

B

a.b=b.c=c.a\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a}

C

a×b=b×c=c×a\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}

D

None of these

Answer

a×b=b×c=c×a\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}

Explanation

Solution

Since a+b+c=0\mathbf{a} + \mathbf{b} + \mathbf{c} = 0

a×(a+b+c)=0a×a+a×b+a×c=0\Rightarrow \mathbf{a} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0} \Rightarrow \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = \mathbf{0}

a×b=a×c=c×a\Rightarrow \mathbf{a} \times \mathbf{b} = - \mathbf{a} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} .....(i)

Similarly, b×(a+b+c)=0a×b=b×c\mathbf{b} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{0} \Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} .....(ii)

By (i) and (ii), we get a×b=b×c=c×a.\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}.