Solveeit Logo

Question

Question: If \(|\mathbf{a}| = 3,|\mathbf{b}| = 4,|\mathbf{c}| = 5\) and \(\mathbf{a} + \mathbf{b} + \mathbf{c}...

If a=3,b=4,c=5|\mathbf{a}| = 3,|\mathbf{b}| = 4,|\mathbf{c}| = 5 and a+b+c=0,\mathbf{a} + \mathbf{b} + \mathbf{c} = 0, then the angle between a and b is

A

0

B

π6\frac{\pi}{6}

C

π3\frac{\pi}{3}

D

π2\frac{\pi}{2}

Answer

π2\frac{\pi}{2}

Explanation

Solution

a+b=ca2+b2+2abcosθ=c2\mathbf{a} + \mathbf{b} = - \mathbf{c} \Rightarrow |\mathbf{a}|^{2} + |\mathbf{b}|^{2} + 2|\mathbf{a}||\mathbf{b}|\cos\theta = |\mathbf{c}|^{2}

cosθ=0θ=π2.\Rightarrow \cos\theta = 0 \Rightarrow \theta = \frac{\pi}{2}.