Solveeit Logo

Question

Question: If \(\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k},\mathbf{b} = m\mathbf{i} + n\mathbf{j} + 1...

If a=2i+3j5k,b=mi+nj+12k\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k},\mathbf{b} = m\mathbf{i} + n\mathbf{j} + 12\mathbf{k} and a×b=0,\mathbf{a} \times \mathbf{b} = 0,

then (m,n)=(m,n) =

A

(245,365)\left( - \frac{24}{5},\frac{36}{5} \right)

B

(245,365)\left( \frac{24}{5}, - \frac{36}{5} \right)

C

(245,365)\left( - \frac{24}{5}, - \frac{36}{5} \right)

D

(245,365)\left( \frac{24}{5},\frac{36}{5} \right)

Answer

(245,365)\left( - \frac{24}{5}, - \frac{36}{5} \right)

Explanation

Solution

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & - 5 \\ m & n & 12 \end{matrix} \right|$$ $$= (36 + 5n)\mathbf{i} - (24 + 5m)\mathbf{j} + (2n - 3m)\mathbf{k} = 0$$ $\Rightarrow m = \frac{- 24}{5},n = \frac{- 36}{5}$.