Solveeit Logo

Question

Question: If \(\mathbf{a} = (1, - 1,1)\) and \(\mathbf{c} = ( - 1, - 1,0),\) then the vector **b** satisfying ...

If a=(1,1,1)\mathbf{a} = (1, - 1,1) and c=(1,1,0),\mathbf{c} = ( - 1, - 1,0), then the vector b satisfying a×b=c\mathbf{a} \times \mathbf{b} = \mathbf{c} and a.b=1\mathbf{a}.\mathbf{b} = 1 is

A

(1, 0, 0)

B

(0, 0, 1)

C

(0, –1, 0)

D

None of these

Answer

(0, 0, 1)

Explanation

Solution

Let b=b1i+b2j+b3k\mathbf{b} = b_{1}\mathbf{i} + b_{2}\mathbf{j} + b_{3}\mathbf{k}

But (ij+k).(b1i+b2j+b3k)=1b1b2+b3=1(\mathbf{i} - \mathbf{j} + \mathbf{k}).(b_{1}\mathbf{i} + b_{2}\mathbf{j} + b_{3}\mathbf{k}) = 1 \Rightarrow b_{1} - b_{2} + b_{3} = 1......(i)

and a×b=ijk111b1b2b3\mathbf{a} \times \mathbf{b} = \left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & - 1 & 1 \\ b_{1} & b_{2} & b_{3} \end{matrix} \right|

=i(b2+b3)+j(b1b3)+k(b2+b1)= - \mathbf{i}(b_{2} + b_{3}) + \mathbf{j}(b_{1} - b_{3}) + \mathbf{k}(b_{2} + b_{1})

a×b=c\Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{c}

Comparing the coefficients of i,j\mathbf{i},\mathbf{j} and k\mathbf{k} respectively,

we get b2+b3=1b_{2} + b_{3} = 1 …..(ii)

b1b3=1b_{1} - b_{3} = - 1 …..(iii)

b2+b1=0b_{2} + b_{1} = 0 …..(iv)

By solving the equations (i), (ii), (iii) and (iv), we get b1=0,b_{1} = 0,

b2=0b_{2} = 0 and b3=1b_{3} = 1.