Question
Question: If \(\mathbf{a} = (1, - 1,1)\) and \(\mathbf{c} = ( - 1, - 1,0),\) then the vector **b** satisfying ...
If a=(1,−1,1) and c=(−1,−1,0), then the vector b satisfying a×b=c and a.b=1 is
A
(1, 0, 0)
B
(0, 0, 1)
C
(0, –1, 0)
D
None of these
Answer
(0, 0, 1)
Explanation
Solution
Let b=b1i+b2j+b3k
But (i−j+k).(b1i+b2j+b3k)=1⇒b1−b2+b3=1......(i)
and a×b=i1b1j−1b2k1b3
=−i(b2+b3)+j(b1−b3)+k(b2+b1)
⇒a×b=c
Comparing the coefficients of i,j and k respectively,
we get b2+b3=1 …..(ii)
b1−b3=−1 …..(iii)
b2+b1=0 …..(iv)
By solving the equations (i), (ii), (iii) and (iv), we get b1=0,
b2=0 and b3=1.