Solveeit Logo

Question

Question: If \(\mathbf { x } \cdot \mathbf { a } = 0 , \mathbf { x } \cdot \mathbf { b } = 0\) and \(\mathb...

If xa=0,xb=0\mathbf { x } \cdot \mathbf { a } = 0 , \mathbf { x } \cdot \mathbf { b } = 0 and xc=0\mathbf { x } \cdot \mathbf { c } = 0 for some non-zero vector x, then the true statement is

A
B

[abc]0\left[ \begin{array} { l l l } \mathbf { a } & \mathbf { b } & \mathbf { c } \end{array} \right] \neq 0

C

[abc]=1\left[ \begin{array} { l l l } \mathbf { a } & \mathbf { b } & \mathbf { c } \end{array} \right] = 1

D

None of these

Answer
Explanation

Solution

Since is a non-zero vector, the given conditions will be satisfied, if either (i) at least one of the vectors a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } is zero or (ii) is perpendicular to all the vectors a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } In case (ii), a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } are coplanar and so