Solveeit Logo

Question

Question: If \(\mathbf { a } = \mathbf { i } + \mathbf { j } + \mathbf { k }\) \(\mathbf { b } = 4 \mathbf { ...

If a=i+j+k\mathbf { a } = \mathbf { i } + \mathbf { j } + \mathbf { k } b=4i+3j+4k\mathbf { b } = 4 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } and c=i+αj+βk\mathbf { c } = \mathbf { i } + \alpha \mathbf { j } + \beta \mathbf { k } are linearly dependent vectors and , then

A

α=1,β=1\alpha = 1 , \beta = - 1

B

α=1,β=±1\alpha = 1 , \beta = \pm 1

C

α=1,β=±1\alpha = - 1 , \beta = \pm 1

D

α=±1,β=1\alpha = \pm 1 , \beta = 1

Answer

α=±1,β=1\alpha = \pm 1 , \beta = 1

Explanation

Solution

The given vectors are linearly dependent hence, there exist scalars x,y,zx , y , z not all zero, such that xa+yb+zc=0x \mathbf { a } + y \mathbf { b } + z \mathbf { c } = \mathbf { 0 }

i.e., x(i+j+k)+y(4i+3j+4k)+z(i+αj+βk)=0x ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) + y ( 4 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) + z ( \mathbf { i } + \alpha \mathbf { j } + \beta \mathbf { k } ) = \mathbf { 0 },

i.e.,(x+4y+z)i+(x+3y+αz)j+(x+4y+βz)k=0( x + 4 y + z ) \mathbf { i } + ( x + 3 y + \alpha z ) \mathbf { j } + ( x + 4 y + \beta z ) \mathbf { k } = \mathbf { 0 }

̃ x+4y+z=0x + 4 y + z = 0 , x+3y+αz=0x + 3 y + \alpha z = 0, x+4y+βz=0x + 4 y + \beta z = 0

For non-trivial solution, ̃ β=1\beta = 1

c2=3| c | ^ { 2 } = 3 ̃ 1+α2+β2=31 + \alpha ^ { 2 } + \beta ^ { 2 } = 3 ̃ α2=2β2=21=1\alpha ^ { 2 } = 2 - \beta ^ { 2 } = 2 - 1 = 1;

\therefore α=±1\alpha = \pm 1

Trick : c=1+α2+β2=3| \mathbf { c } | = \sqrt { 1 + \alpha ^ { 2 } + \beta ^ { 2 } } = \sqrt { 3 } ̃ α2+β2=2\alpha ^ { 2 } + \beta ^ { 2 } = 2

\bullet \bullet a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } are linearly dependent, hence

̃ β=1\beta = 1.

\therefore α2=1\alpha ^ { 2 } = 1 ̃ α=±1\alpha = \pm 1 .