Question
Question: If \(\mathbf { a } = \mathbf { i } + \mathbf { j } + \mathbf { k }\) \(\mathbf { b } = 4 \mathbf { ...
If a=i+j+k b=4i+3j+4k and c=i+αj+βk are linearly dependent vectors and , then
A
α=1,β=−1
B
α=1,β=±1
C
α=−1,β=±1
D
α=±1,β=1
Answer
α=±1,β=1
Explanation
Solution
The given vectors are linearly dependent hence, there exist scalars x,y,z not all zero, such that xa+yb+zc=0
i.e., x(i+j+k)+y(4i+3j+4k)+z(i+αj+βk)=0,
i.e.,(x+4y+z)i+(x+3y+αz)j+(x+4y+βz)k=0
̃ x+4y+z=0 , x+3y+αz=0, x+4y+βz=0
For non-trivial solution, ̃ β=1
∣c∣2=3 ̃ 1+α2+β2=3 ̃ α2=2−β2=2−1=1;
∴ α=±1
Trick : ∣c∣=1+α2+β2=3 ̃ α2+β2=2
∙∙ a,b,c are linearly dependent, hence
̃ β=1.
∴ α2=1 ̃ α=±1 .