Solveeit Logo

Question

Question: If \(\mathbf { a } = \mathbf { i } - \mathbf { j }\) and \(\mathbf { b } = \mathbf { i } + \mathbf...

If a=ij\mathbf { a } = \mathbf { i } - \mathbf { j } and b=i+k\mathbf { b } = \mathbf { i } + \mathbf { k }, then a unit vector coplanar with a and b and perpendicular to a is

A

i

B

j

C

k

D

None of these

Answer

None of these

Explanation

Solution

c=λa+μb=(λ+μ)iλj+μk\mathbf { c } = \lambda \mathbf { a } + \mu \mathbf { b } = ( \lambda + \mu ) \mathbf { i } - \lambda \mathbf { j } + \mu \mathbf { k }

Now,

Therefore, c=λiλj2λk=(6)(λ)[i+j+2k6]\mathbf { c } = - \lambda \mathbf { i } - \lambda \mathbf { j } - 2 \lambda \mathbf { k } = ( \sqrt { 6 } ) ( - \lambda ) \left[ \frac { \mathbf { i } + \mathbf { j } + 2 \mathbf { k } } { \sqrt { 6 } } \right]

Hence, unit vector =(i+j+2k)6= \frac { ( \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) } { \sqrt { 6 } }.