Solveeit Logo

Question

Question: If \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) be any three non-zero non-coplanar vectors, t...

If a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } be any three non-zero non-coplanar vectors, then any vector r\mathbf { r } is equal to

A

za+xb+ycz \mathbf { a } + x \mathbf { b } + y \mathbf { c }

B

xa+yb+zcx \mathbf { a } + y \mathbf { b } + z \mathbf { c }

C

ya+zb+xcy \mathbf { a } + z \mathbf { b } + x \mathbf { c }

D

None of these

Answer

xa+yb+zcx \mathbf { a } + y \mathbf { b } + z \mathbf { c }

Explanation

Solution

Where , , As a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } are three non-coplanar vectors, we may assume

r=αa+βb+γc\mathbf { r } = \alpha \mathbf { a } + \beta \mathbf { b } + \gamma \mathbf { c }

=

̃

But ; α=x\therefore \alpha = x

Similarly β=y,γ=z\beta = y , \gamma = z ; \therefore r=xa+yb+zc\mathbf { r } = x \mathbf { a } + y \mathbf { b } + z \mathbf { c }