Solveeit Logo

Question

Question: If \(| \mathbf { a } | = 3 , | \mathbf { b } | = 4\) then a value of λ for which \(\mathbf { a } +...

If a=3,b=4| \mathbf { a } | = 3 , | \mathbf { b } | = 4 then a value of λ for which a+λb\mathbf { a } + \lambda \mathbf { b } is perpendicular to aλb\mathbf { a } - \lambda \mathbf { b } is

A

916\frac { 9 } { 16 }

B

34\frac { 3 } { 4 }

C

32\frac { 3 } { 2 }

D

43\frac { 4 } { 3 }

Answer

34\frac { 3 } { 4 }

Explanation

Solution

Since a+λb\mathbf { a } + \lambda \mathbf { b } is perpendicular to aλb\mathbf { a } - \lambda \mathbf { b } , then their product will be zero.

So, (a+λb)(aλb)=0( \mathbf { a } + \lambda \mathbf { b } ) \cdot ( \mathbf { a } - \lambda \mathbf { b } ) = 0a2λ2b2=0| \mathbf { a } | ^ { 2 } - \lambda ^ { 2 } | \mathbf { b } | ^ { 2 } = 0

or λ2=a2b2λ2=916\lambda ^ { 2 } = \frac { | \mathbf { a } | ^ { 2 } } { | \mathbf { b } | ^ { 2 } } \Rightarrow \lambda ^ { 2 } = \frac { 9 } { 16 } or λ=±34\lambda = \pm \frac { 3 } { 4 } , [a=3,b=4][ \because | \mathbf { a } | = 3 , | \mathbf { b } | = 4 ] .