Solveeit Logo

Question

Question: If \(\mathbb{R}\) be the set of all real numbers and \(f:\mathbb{R} \to \mathbb{R}\) is given by \(f...

If R\mathbb{R} be the set of all real numbers and f:RRf:\mathbb{R} \to \mathbb{R} is given by f(x)=3x2+1f\left( x \right) = 3{x^2} + 1 . Then, the set of f1([1,6]){f^{ - 1}}\left( {\left[ {1,6} \right]} \right) is
A) \left\\{ { - \sqrt {\dfrac{5}{3}} ,0,\sqrt {\dfrac{5}{3}} } \right\\}
B) [53,53]\left[ { - \sqrt {\dfrac{5}{3}} ,\sqrt {\dfrac{5}{3}} } \right]
C) [13,13]\left[ { - \sqrt {\dfrac{1}{3}} ,\sqrt {\dfrac{1}{3}} } \right]
D) (53,53)\left( { - \sqrt {\dfrac{5}{3}} ,\sqrt {\dfrac{5}{3}} } \right)

Explanation

Solution

The inverse of the function f1{f^{ - 1}} exists only if the function f(x)f\left( x \right) is one-one and onto.
One-one function: When each element of set B is mapped to only one element of set A, i.e., each object in set A has a unique image in set B, then the function is called one-one function.
onto functions. If for functions f:ABf:{\text{A}} \to {\text{B}} the co-domain set of B is also the range for the function, then the function is called an onto function.

Complete step-by-step answer:
Step 1: Check if the given function is one-one.
Given that for f:RRf:\mathbb{R} \to \mathbb{R} the function f(x)=3x2+1f\left( x \right) = 3{x^2} + 1
Where R\mathbb{R} is the set of all real numbers.
Let x1,x2R{x_1},{x_2} \in \mathbb{R} (that is the domain of the given function).
The function is one-one for f(x1)=f(x2)f\left( {{x_1}} \right) = f\left( {{x_2}} \right)

3x12+1=3x22+1 3x12=3x22 x12=x22  \Rightarrow 3{x_1}^2 + 1 = 3{x_2}^2 + 1 \\\ \Rightarrow 3{x_1}^2 = 3{x_2}^2 \\\ \Rightarrow {x_1}^2 = {x_2}^2 \\\

Since for x1=1R{x_1} = 1 \in \mathbb{R} ; x12=1{x_1}^2 = 1
And for x2=1R{x_2} = - 1 \in \mathbb{R} ; x22=1{x_2}^2 = 1
We have, x12=x22{x_1}^2 = {x_2}^2 but x1x2{x_1} \ne {x_2}
Thus the given function f(x)=3x2+1f\left( x \right) = 3{x^2} + 1 is not one-one, hence the function is not invertible. Thus, the inverse of the function does not exist for the co-domain R\mathbb{R} of the function f(x)f\left( x \right). So none of the options is correct.
But if we redefine the domain for x0x \geqslant 0 the function will become the one-one. But still, the function is not onto so we will have to redefine the co-domain as well.
The output values of the function f(x)=3x2+1f\left( x \right) = 3{x^2} + 1 will always be positive as the square of the x is involved.
For x = 0, f(0)=3(02)+1=0+1=1f\left( 0 \right) = 3\left( {{0^2}} \right) + 1 = 0 + 1 = 1
For x = 1, f(1)=3(12)+1=3+1=4f\left( 1 \right) = 3\left( {{1^2}} \right) + 1 = 3 + 1 = 4
For x = -1, f(1)=3(12)+1=3+1=4f\left( { - 1} \right) = 3\left( { - {1^2}} \right) + 1 = 3 + 1 = 4
Thus, the range of the function f(x)=3x2+1f\left( x \right) = 3{x^2} + 1 is R=[1,)R = \left[ {1,\infty } \right)
The graphical representation of the f(x)=3x2+1f\left( x \right) = 3{x^2} + 1with its domain x[0,)x \in \left[ {0,\infty } \right) and its co-domain f(x)[1,)f\left( x \right) \in \left[ {1,\infty } \right)

So the new function will be f:[0,)[1,),f(x)=3x2+1f:\left[ {0,\infty } \right) \to \left[ {1,\infty } \right),f\left( x \right) = 3{x^2} + 1.
Now the function is invertible.
f(x)=3x2+1f\left( x \right) = 3{x^2} + 1
Differentiating both sides with respect to x.
f(x)=6xf'\left( x \right) = 6x
f(x)f'\left( x \right) is positive, hence the function f(x)f\left( x \right) is an increasing function. Therefore we will just have to calculate the values at the endpoint only in f1(x){f^{ - 1}}\left( x \right)
Step 2: let's find the inverse of the given function in the redefined domain.
y=3x2+1 3x2=y1 x2=y13 x=±y13  y = 3{x^2} + 1 \\\ \Rightarrow 3{x^2} = y - 1 \\\ \Rightarrow {x^2} = \dfrac{{y - 1}}{3} \\\ \Rightarrow x = \pm \sqrt {\dfrac{{y - 1}}{3}} \\\
Interchange xyx \leftrightarrow y
y=±x13\Rightarrow y = \pm \sqrt {\dfrac{{x - 1}}{3}}
Thus f1(x)=±x13{f^{ - 1}}\left( x \right) = \pm \sqrt {\dfrac{{x - 1}}{3}}
Step 3: Find the set of f1([1,6]){f^{ - 1}}\left( {\left[ {1,6} \right]} \right)
f1(x)=x13{f^{ - 1}}\left( x \right) = \sqrt {\dfrac{{x - 1}}{3}}
For x = 1, f1(1)=113=0{f^{ - 1}}\left( 1 \right) = \sqrt {\dfrac{{1 - 1}}{3}} = 0
For x = 6, f1(6)=613=53{f^{ - 1}}\left( 6 \right) = \sqrt {\dfrac{{6 - 1}}{3}} = \sqrt {\dfrac{5}{3}}
f1([1,6])[0,53]{f^{ - 1}}\left( {\left[ {1,6} \right]} \right) \in \left[ {0,\sqrt {\dfrac{5}{3}} } \right]

Similarly, if we redefine the domain as x(,0]x \in \left( { - \infty ,0} \right] and codomain as the [1,)\left[ {1,\infty } \right) we will get f1([1,6]){f^{ - 1}}\left( {\left[ {1,6} \right]} \right)
f1(x)=x13{f^{ - 1}}\left( x \right) = - \sqrt {\dfrac{{x - 1}}{3}}
For x = 1, f1(1)=113=0{f^{ - 1}}\left( 1 \right) = - \sqrt {\dfrac{{1 - 1}}{3}} = 0
For x = 6, f1(6)=613=53{f^{ - 1}}\left( 6 \right) = - \sqrt {\dfrac{{6 - 1}}{3}} = - \sqrt {\dfrac{5}{3}}
we get f1([1,6])[53,0]{f^{ - 1}}\left( {\left[ {1,6} \right]} \right) \in \left[ { - \sqrt {\dfrac{5}{3}} ,0} \right]
Thus, f1([1,6]){f^{ - 1}}\left( {\left[ {1,6} \right]} \right) [53,53] \in \left[ { - \sqrt {\dfrac{5}{3}} ,\sqrt {\dfrac{5}{3}} } \right] for different domains.
Final answer: The set of f1([1,6]){f^{ - 1}}\left( {\left[ {1,6} \right]} \right) is [53,53]\left[ { - \sqrt {\dfrac{5}{3}} ,\sqrt {\dfrac{5}{3}} } \right].

Thus, the correct option maybe (C).

Note: The composition of functions is also useful in checking the invertible function, hence finding the inverse of the function.
A function f:XYf:X \to Y is defined to be invertible, if there exists a function g:YXg:Y \to X such that gof=Ixgof = {I_x}and fog=Iyfog = {I_y} . The function gg is called the inverse of ff and is denoted by f1{f^{ - 1}} .