Solveeit Logo

Question

Question: If \(m\)and \(x\) are two real numbers, then \(e^{2mi\cot^{- 1}x}\left( \frac{xi + 1}{xi - 1} \right...

If mmand xx are two real numbers, then e2micot1x(xi+1xi1)me^{2mi\cot^{- 1}x}\left( \frac{xi + 1}{xi - 1} \right)^{m}is equal to

A

cosx+isinx\cos x + i\sin x

B

m2\frac{m}{2}

C

1

D

(m+1)2\frac{(m + 1)}{2}

Answer

1

Explanation

Solution

Sol. Let cot1x=θ,\cot^{- 1}x = \theta, then cotθ=x\cot\theta = x or tanθ=1x\tan\theta = \frac{1}{x}.

We have e2icot1x=e2iθ=cos(2θ)+isin(2θ)e^{2i\cot^{- 1}x} = e^{2i\theta} = \cos(2\theta) + i\sin(2\theta)

= 1tan2θ1+tan2θ+i(2tanθ1+tan2θ)=11/.x21+1/x2+i(2/x1+1/x2)\frac{1 - \tan^{2}\theta}{1 + \tan^{2}\theta} + i\left( \frac{2\tan\theta}{1 + \tan^{2}\theta} \right) = \frac{1 - 1/.x^{2}}{1 + 1/x^{2}} + i\left( \frac{2/x}{1 + 1/x^{2}} \right)

x21x2+1+2ixx2+1=(x+i)2(xi)(x+i)=x+ixi=ix+i2ixi=ix1ix+1\frac{x^{2} - 1}{x^{2} + 1} + \frac{2ix}{x^{2} + 1} = \frac{(x + i)^{2}}{(x - i)(x + i)} = \frac{x + i}{x - i} = \frac{ix + i^{2}}{ix - i} = \frac{ix - 1}{ix + 1}

(e2icot1x)m=(ix1ix+1)m\left( e^{2i\cot^{- 1}x} \right)^{m} = \left( \frac{ix - 1}{ix + 1} \right)^{m}

e2micot1x(ix+1ix1)m=1e^{2mi\cot^{- 1}x}\left( \frac{ix + 1}{ix - 1} \right)^{m} = 1