Solveeit Logo

Question

Question: If \(m_{1}\)and \(m_{2}\) are the slopes of the tangents to the hyperbola \(\frac{x^{2}}{25} - \frac...

If m1m_{1}and m2m_{2} are the slopes of the tangents to the hyperbola x225y216=1\frac{x^{2}}{25} - \frac{y^{2}}{16} = 1 which pass through the point (6, 2) then

A

m1+m2=2411m_{1} + m_{2} = \frac{24}{11}

B

m1m2=2011m_{1}m_{2} = \frac{20}{11}

C

m1+m2=4811m_{1} + m_{2} = \frac{48}{11}

D

m1m2=1120m_{1}m_{2} = \frac{11}{20}

Answer

m1m2=2011m_{1}m_{2} = \frac{20}{11}

Explanation

Solution

x225y216=1\frac{x^{2}}{25} - \frac{y^{2}}{16} = 1

Equation of tangent in terms of slope

y=mx±(25m216)y = mx \pm \sqrt{\left( 25m^{2} - 16 \right)}

or (ymx)2=25m216(y - mx)^{2} = 25m^{2} - 16it is passing through (6, 2) then

(26m)2=25m216(2 - 6m)^{2} = 25m^{2} - 164+36m224m=25m2164 + 36m^{2} - 24m = 25m^{2} - 1611m224m+20=011m^{2} - 24m + 20 = 0m1m2=2011m_{1}m_{2} = \frac{20}{11}