Solveeit Logo

Question

Question: If m1, m2, m3, m4 are the magnitudes of the vectors \({\vec a_1} = \,2\vec i - \vec j + \vec k,\,{\v...

If m1, m2, m3, m4 are the magnitudes of the vectors a1=2ij+k,a2=3i4j4k,a3=i+jk,a4=i+3j+k{\vec a_1} = \,2\vec i - \vec j + \vec k,\,{\vec a_2} = \,3\vec i - 4\vec j - 4\vec k,\,{\vec a_3} = - \vec i + \vec j - \vec k,\,{\vec a_4} = - \vec i + 3\vec j + \vec k then the correct order of m1, m2, m3, m4 is:
A) m3 < m1 < m4 < m2
B) m3 < m1 < m2 < m4
C) m3 < m4 < m1 < m2
D) m3 < m4 < m2 < m1

Explanation

Solution

Hint – In order to solve this problem use the formula of finding the magnitude of a given vector. After doing this you will get the right answer.

Complete step-by-step answer:
As we know that if the vector is p=ai+bj+ck\vec p = a\vec i + b\vec j + c\vec k the its magnitude will be p=a2+b2+c2|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} .
Therefore the magnitude of the vector a1=2ij+k{\vec a_1} = \,2\vec i - \vec j + \vec k is a1=22+(1)2+(1)2=6=m1|{\vec a_1}| = \sqrt {{2^2} + {{( - 1)}^2} + {{(1)}^2}} = \sqrt 6 = {m_1}
And the magnitude of the vector a2=3i4j4k{\vec a_2} = \,3\vec i - 4\vec j - 4\vec k is a2=32+(4)2+(4)2=41=m2|{\vec a_2}| = \sqrt {{3^2} + {{( - 4)}^2} + {{( - 4)}^2}} = \sqrt {41} = {m_2}
The magnitude of the vector a3=i+jk{\vec a_3} = - \vec i + \vec j - \vec k is a3=(1)2+(1)2+(1)2=3=m3|{\vec a_3}| = \sqrt {{{( - 1)}^2} + {{(1)}^2} + {{( - 1)}^2}} = \sqrt 3 = {m_3}
The magnitude of the vector a4=i+3j+k{a_4} = - \vec i + 3\vec j + \vec k = a4=(1)2+(3)2+(1)2=11=m4|{\vec a_4}| = \sqrt {{{( - 1)}^2} + {{(3)}^2} + {{(1)}^2}} = \sqrt {11} = {m_4}
We can clearly see that m3 < m1 < m4 < m2.
So, the correct option is A.

Note - Whenever you face such type of problems of finding magnitude of vectors you have to use the formula for finding magnitudes of vectors. For example the vector is p=ai+bj+ck\vec p = a\vec i + b\vec j + c\vec k then its magnitude will be p=a2+b2+c2|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} . Proceeding like this you will get the right answer.