Question
Question: If \(m{\text{ and }}p\) are positive \((m \geqslant p)\) and \(\Delta (m,p) = \left| {\begin{array}{...
If m and p are positive (m⩾p) and \Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right| and mCp=0 if m<p, then
This equation has multiple correct options:
A. Δ(2,1)/Δ(1,0)=4
B. Δ(4,3)/Δ(3,2)=2
C. Δ(4,3)/Δ(2,1)=5
D. Δ(4,3)/Δ(1,0)=10
Solution
If we are given nCr then it means that nCr=(n−r)!r!n! and here ! means factorial for the number. Also we should know that nCr=nCn−r
Complete step by step solution:
Here we are given that
\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|
Now it is also given that mCp=0 if m<p
Now for m>p
mCp=(m−p)!p!m!
So for option A
We need to find Δ(2,1),Δ(1,0)
So we get that m=2,p=1
\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_{1 + 1}}}&{{}^2{C_{1 + 2}}} \\\
{{}^{2 + 1}{C_1}}&{{}^{2 + 1}{C_{1 + 1}}}&{{}^{2 + 1}{C_{1 + 2}}} \\\
{{}^{2 + 2}{C_1}}&{{}^{2 + 2}{C_{1 + 1}}}&{{}^{2 + 2}{C_{1 + 2}}}
\end{array}} \right|
And we also know that nCn=1
And we know that for mCp if m<p then mCp=0 here 2C3=0
\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_2}}&{{}^2{C_3}} \\\
{{}^3{C_1}}&{{}^3{C_2}}&{{}^3{C_3}} \\\
{{}^4{C_1}}&{{}^4{C_2}}&{{}^4{C_3}}
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
2&1&0 \\\
3&3&1 \\\
4&6&4
\end{array}} \right|
We know that 4C2=2!2!4!=2(1)4(3)=6,2C3=0
So we get that Δ(2,1)=2(12−6)−1(12−4)+0(18−12)
Δ(2,1)=2(6)−8 =4
\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_{0 + 1}}}&{{}^1{C_{0 + 2}}} \\\
{{}^{1 + 1}{C_0}}&{{}^{1 + 1}{C_{0 + 1}}}&{{}^{1 + 1}{C_{0 + 2}}} \\\
{{}^{1 + 1}{C_0}}&{{}^{1 + 2}{C_{0 + 1}}}&{{}^{1 + 2}{C_{0 + 2}}}
\end{array}} \right|
= \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_1}}&{{}^1{C_2}} \\\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^2{C_2}} \\\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^3{C_2}}
\end{array}} \right|
So we get that 0!=1,1C0=1!0!1!=1,2C0=(2−0)!0!2!=1
So we get that \Delta (1,0) = \left| {\begin{array}{*{20}{l}}
1&1&0 \\\
1&2&1 \\\
1&3&3
\end{array}} \right|
So we get that
So Δ(2,1)/Δ(1,0)=4/1=4
Hence option A is right and similarly we need to check the other options also
For option B we need to find Δ(4,3),Δ(3,2)
\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
{{}^4{C_3}}&{{}^4{C_4}}&{{}^4{C_5}} \\\
{{}^5{C_3}}&{{}^5{C_4}}&{{}^5{C_5}} \\\
{{}^6{C_3}}&{{}^6{C_4}}&{{}^6{C_5}}
\end{array}} \right|
Now we know that if m<p then mCp=0 here 4C5=0
\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
4&1&0 \\\
{\dfrac{{5!}}{{2!3!}}}&5&1 \\\
{\dfrac{{6!}}{{3!3!}}}&{\dfrac{{6!}}{{4!2!}}}&6
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
4&1&0 \\\
{10}&5&1 \\\
{20}&{15}&6
\end{array}} \right|
So we get that Δ(4,3)=4(30−15)−1(150−100)+0=60−50=10
Now forΔ(3,2), m=3,p=2
\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
{{}^3{C_2}}&{{}^3{C_3}}&{{}^3{C_4}} \\\
{{}^4{C_2}}&{{}^4{C_3}}&{{}^4{C_4}} \\\
{{}^5{C_2}}&{{}^5{C_3}}&{{}^5{C_4}}
\end{array}} \right|
Now we know that if m<p then mCp=0 here 3C4=0
\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
3&1&0 \\\
{\dfrac{{4!}}{{2!2!}}}&4&1 \\\
{\dfrac{{5!}}{{2!3!}}}&{\dfrac{{5!}}{{3!2!}}}&5
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
3&1&0 \\\
6&4&1 \\\
{10}&{10}&5
\end{array}} \right|
So we get that Δ(3,2)=3(20−10)−1(30−10)+0=10
So we get that Δ(4,3)=10 and Δ(3,2)=10
So Δ(4,3)/Δ(3,2)=10/10=1
Hence option B is also incorrect.
For option C
We know thatΔ(4,3)=10, Δ(2,1)=4
So Δ(4,3)/Δ(2,1)=10/4=2.5
Hence option C is not correct
For option D
We know thatΔ(4,3)=10,Δ(1,0)=1
Δ(4,3)/Δ(1,0)=10/1=1
Hence option D is also correct.
Hence we get that option A and D are correct.
Note:
We know that n!=n(n−1)(n−2).........3.2.1 and we know that n>0
If n=0 then 0!=1
Similarly for the combination we know that nCr=(n−r)!r!n!
And for permutation we know that nPr=(n−r)!n!
Combination is the number of ways of choosing r things whereas permutation includes the selection as well as the arrangement of r out of n things.