Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If m=tanθ+sinθm = \tan \, \theta + \sin \, \theta and n=tanθsinθn = \tan \, \theta - \sin \, \theta, then (m2n2)2(m^2 - n^2)^2 is equal to

A

mnm \, n

B

4mn4 \, m \, n

C

16mn16 \, m \, n

D

4mn4 \sqrt{m n }

Answer

16mn16 \, m \, n

Explanation

Solution

\left(m^{2} - n^{2}\right)^{2} = \left\\{\left(m+n\right)\left(m-n\right)\right\\}^{2} =\left\\{\left(2 \tan\theta\right)\left(2 \sin\theta\right)\right\\}^{2} =16tan2θsin2θ=16(tan2θsin2θ)= 16 \tan^{2} \theta \sin^{2} \theta= 16\left(\tan^{2} \theta - \sin^{2} \theta\right) =16mn= 16 mn (tan2θsin2θ=tan2θ(1cos2θ)=tan2θsin2θ) \left(\because \tan^{2} \theta \sin^{2} \theta = \tan^{2} \theta\left(1 - \cos^{2} \theta\right) = \tan^{2} \theta - \sin^{2} \theta\right)