Solveeit Logo

Question

Mathematics Question on Straight lines

If mm is the slope of one of the lines represented by ax2+2hxy+by2=0,ax^2 + 2hxy + by^2 = 0, then (h+bm)2(h + bm)^2 = ______

A

h2+abh^2 +ab

B

h2abh^2-ab

C

(a+b)2(a +b)^2

D

(ab)2(a -b)^2

Answer

h2abh^2-ab

Explanation

Solution

Given that, ax2+2hxy+by2=0a x^{2}+2 h x y +by^{2}=0...(i)
Which is homogeneous equation representing pair of straight line each of which passing through the origin. Given one slope of line =m=m.
Let another slope of line =m1=m_{1}
Then, the lines are y=mxy=m x and y=m1xy=m_{1} x
Now, (mxy)(m1xy)(m x-y)\left(m_{1} x-y\right)
mm1x2m1xymxy+y2\Rightarrow m m_{1} x^{2}-m_{1} x y-m x y +y^{2}
mm1x2(m+m1)yx+y2\Rightarrow m m_{1} \cdot x^{2}-\left(m +m_{1}\right) y \cdot x +y^{2}...(ii)
On comparing Eqs. (i) and (ii),
m+m1=2hbm+m_{1}=-\frac{2 h}{b}...(iii)
mm1=abm m_{1}=\frac{a}{b}...(iv)
From Eqs. (iii) and (iv),
m1=(2hbm)m_{1}=\left(-\frac{2 h}{b}-m\right)
m(2hbm)=ab\Rightarrow m\left(\frac{-2 h}{b}-m\right)=\frac{a}{b}
mb(2h+mb)=ab\Rightarrow -\frac{m}{b}(2h +m b)=\frac{a}{b}
2mhm2b=a\Rightarrow -2 m h-m^{2} b=a
2mhbm2b2=ab\Rightarrow -2 m h b-m^{2} b^{2}=a b
h2+2mhb+m2b2=ab+h2\Rightarrow h^{2}+2mhb +m^{2} b^{2}=-ab +h^{2}
(h+mb)2=h2ab\Rightarrow (h +m b)^{2}=h^{2}-a b