Solveeit Logo

Question

Question: If M is a square matirx of order 3 satisfying $M^T M=4I$ and $|M|=8$ then the value of $|M-2I|$ will...

If M is a square matirx of order 3 satisfying MTM=4IM^T M=4I and M=8|M|=8 then the value of M2I|M-2I| will be

A

2

B

4

C

16

D

0

Answer

0

Explanation

Solution

Given a square matrix M of order 3 such that MTM=4IM^T M=4I and M=8|M|=8. We need to find the value of M2I|M-2I|.

Let λ\lambda be an eigenvalue of M with corresponding eigenvector xx. Then Mx=λxMx = \lambda x.

Substitute this into the given equation MTM=4IM^T M = 4I: MT(Mx)=4IxM^T (Mx) = 4Ix MT(λx)=4xM^T (\lambda x) = 4x λMTx=4x\lambda M^T x = 4x

Since xx is a non-zero eigenvector, and from M=8|M|=8 we know M is invertible (so λ0\lambda \neq 0): MTx=4λxM^T x = \frac{4}{\lambda} x

This implies that if λ\lambda is an eigenvalue of M, then 4/λ4/\lambda is an eigenvalue of MTM^T. Since a matrix and its transpose have the same eigenvalues, 4/λ4/\lambda must also be an eigenvalue of M.

Let the eigenvalues of M be λ1,λ2,λ3\lambda_1, \lambda_2, \lambda_3. The set of eigenvalues {λ1,λ2,λ3}\{\lambda_1, \lambda_2, \lambda_3\} must be the same as {4/λ1,4/λ2,4/λ3}\{4/\lambda_1, 4/\lambda_2, 4/\lambda_3\}.

We are given M=8|M|=8, which means λ1λ2λ3=8\lambda_1 \lambda_2 \lambda_3 = 8.

Now, let's consider the implications of the eigenvalue relationship:

  1. If an eigenvalue λi\lambda_i satisfies λi=4/λi\lambda_i = 4/\lambda_i: Then λi2=4    λi=±2\lambda_i^2 = 4 \implies \lambda_i = \pm 2. If all eigenvalues are of this form, then the possible sets of eigenvalues for M (whose product is 8) are:
  • {2,2,2}\{2, 2, 2\} (product 2×2×2=82 \times 2 \times 2 = 8)

  • {2,2,2}\{2, -2, -2\} (product 2×(2)×(2)=82 \times (-2) \times (-2) = 8)

In both these valid cases, 2 is an eigenvalue of M.

  1. If eigenvalues are permuted (e.g., λ1=4/λ2\lambda_1 = 4/\lambda_2, λ2=4/λ1\lambda_2 = 4/\lambda_1, and λ3=4/λ3\lambda_3 = 4/\lambda_3): From λ3=4/λ3\lambda_3 = 4/\lambda_3, we get λ3=±2\lambda_3 = \pm 2. The product of eigenvalues is λ1λ2λ3=(4/λ2)λ2λ3=4λ3\lambda_1 \lambda_2 \lambda_3 = (4/\lambda_2) \lambda_2 \lambda_3 = 4 \lambda_3. Since the product is 8, 4λ3=8    λ3=24 \lambda_3 = 8 \implies \lambda_3 = 2. Thus, in this case, 2 is also an eigenvalue of M.

In all possible scenarios, 2 must be an eigenvalue of M. Let λ1=2\lambda_1 = 2.

We need to find M2I|M-2I|. The eigenvalues of the matrix M2IM-2I are (λ12),(λ22),(λ32)(\lambda_1-2), (\lambda_2-2), (\lambda_3-2). The determinant M2I|M-2I| is the product of these eigenvalues: M2I=(λ12)(λ22)(λ32)|M-2I| = (\lambda_1-2)(\lambda_2-2)(\lambda_3-2).

Since λ1=2\lambda_1 = 2, one of the terms in the product is (22)=0(2-2)=0. Therefore, M2I=(22)(λ22)(λ32)=0×(λ22)(λ32)=0|M-2I| = (2-2)(\lambda_2-2)(\lambda_3-2) = 0 \times (\lambda_2-2)(\lambda_3-2) = 0.

The value of M2I|M-2I| is 0.