Solveeit Logo

Question

Mathematics Question on Sequence and series

If mm is a root of the equation (1ab)x2(a2+b2)x(1+ab)=0(1 - ab) x^2 - (a^2 + b^2) x - (1 + ab) = 0, and mm harmonic means are inserted between aa and bb, then the difference between the last and the first of the means equals

A

bab - a

B

ab(ba)ab (b - a)

C

a(ba)a (b - a)

D

ab(ab)ab (a - b)

Answer

ab(ba)ab (b - a)

Explanation

Solution

By the given condition (1ab)m2(a2+b2)m(1+ab)=0\left(1-ab\right)m^{2} -\left(a^{2}+b^{2}\right)m-\left(1+ab\right)=0 m(a2+b2)+(m2+1)ab=m21...(1)\Rightarrow m\left(a^{2}+b^{2}\right)+\left(m^{2}+1\right) ab = m^{2}-1\quad...\left(1\right) Now H1= H_{1} = First H.MH.M. between aa and bb =(m+1)aba+mb= \frac{\left(m+1\right)ab}{a+mb} and Hm=(m+1)abb+maH_{m} = \frac{\left(m+1\right)ab}{b+ma} HmH1=(m+1)ab[1b+ma1a+mb]\therefore H_{m} -H_{1} = \left(m+1\right)ab\left[\frac{1}{b+ma} - \frac{1}{a+mb}\right] =(m+1)ab[(m1)(ba)](b+ma)(a+mb) =\left(m+1\right)ab \frac{\left[\left(m-1\right)\left(b-a\right)\right]}{\left(b+ma\right)\left(a+mb\right)} =(m21)ab(ba)m(a2+b2)+(m2+1)ab= \frac{\left(m^{2}-1\right)ab\left(b-a\right)}{m\left(a^{2}+b^{2}\right)+\left(m^{2}+1\right)ab} =(m21)ab(ba)m21= \frac{\left(m^{2}-1\right)ab\left(b-a\right)}{m^{2}-1} [By (1)](1)] =ab(ba) = ab \left(b-a\right)