Solveeit Logo

Question

Question: If m is a prime number and \(a,b\) two numbers less than \(m\), prove that \({{a}^{m-2}}+{{a}^{m-3}}...

If m is a prime number and a,ba,b two numbers less than mm, prove that am2+am3b+am4b2+...+bm2{{a}^{m-2}}+{{a}^{m-3}}b+{{a}^{m-4}}{{b}^{2}}+...+{{b}^{m-2}} is a multiple of mm.

Explanation

Solution

We use the Fermat’s little theorem which states that ap11(modp){{a}^{p-1}}\equiv 1\left( \bmod p \right) where pp is a prime and aa is an integer such that pp does not divide aa to prove am11,bm11{{a}^{m-1}}-1,{{b}^{m-1}}-1 are multiples of mm. We also use the algebraic identity for some positive integer nn as anbn=(ab)(an1+an2b+an3b2+...+bn1){{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+...+{{b}^{n-1}} \right)$$$$

Complete step-by-step solution:
We know from Fermat’s theorem of modular arithmetic that if pp is a prime number and aa is any integer such that aa is not a multiple of pp then apa{{a}^{p}}-a is multiple of pp. Mathematically we have;

& p|{{a}^{p}}-a \\\ & \Rightarrow {{a}^{p}}\equiv a\left( \bmod p \right) \\\ & \Rightarrow {{a}^{p-1}}\equiv 1\left( \bmod p \right) \\\ & \Rightarrow p|{{a}^{p-1}}-1 \\\ \end{aligned}$$ We are given the question that $m$ is a prime number and $a,b$ two numbers less than$m$. Since $a,b$ are less than $m$ they cannot be a multiple of $m$. So b y Fermat’s little thermo we can state that ${{a}^{m-1}}-1$ and ${{b}^{m-1}}-1$ are multiple of $m$ that is $$m|{{a}^{m-1}}-1,m|{{b}^{m-1}}-1$$ We know that if a number divides two numbers then the number also divides their sum or difference. So we have $$\begin{aligned} & \Rightarrow m|{{a}^{m-1}}-1-\left( {{b}^{m-1}}-1 \right) \\\ & \Rightarrow m|{{a}^{m-1}}-{{b}^{m-1}} \\\ \end{aligned}$$ We use the factorization identity ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+...+{{b}^{n-1}} \right)$ for $n=m-1$ in the above step to have; $$\Rightarrow m|\left( a-b \right)\left( {{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}} \right)$$ We in the above step $m$ either exactly divide $a-b$ or $m$ exactly divide ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$ or divide both. We are given that $a,b < m$ , so $m$ cannot exactly divide $a-b$. So it can only exactly divide ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$. Hence it is proved that ${{a}^{m-2}}+{{a}^{m-3}}{{b}^{2}}+{{a}^{m-4}}{{b}^{3}}+...+{{b}^{m-2}}$ is a multiple of $m$. $$$$ **Note:** We note that if a divisor $d$ divides a number $n$ with remainder zero we call the division exact division, the divisor $d$ a factor of $n$ and the dividend $n$ a multiple of $d$. We know from law modular arithmetic that if $a\equiv b\left( \bmod n \right)\Leftrightarrow ak\equiv bk\left( \bmod n \right)$ for non-zero integers $k$. The converse of Fermat’s little theorem is used for primality of number if there exist integer $a,p$ such that ${{a}^{p}}\equiv p\left( \bmod n \right)$ for all primes $q$ dividing exactly $p-1$ and $p$ cannot divide $ {{a}^{\dfrac{p-1}{q}}}-1$ then $p$ is a prime.