Solveeit Logo

Question

Question: If M denotes the mid-point of the line joining A(4\(\widehat{i}\) + 5\(\widehat{j}\) –10\(\widehat{...

If M denotes the mid-point of the line joining

A(4i^\widehat{i} + 5j^\widehat{j} –10k^\widehat{k}) & B(–i^\widehat{i} + 2j^\widehat{j} + k^\widehat{k}), then the equation of the plane through M & perpendicular to AB is :

A

r\overset{\rightarrow}{r}.(–5i^\widehat{i} – 3j^\widehat{j} +11k^\widehat{k})+1352\frac{135}{2} = 0

B

r\overset{\rightarrow}{r}.(32i^+72j^92k^)\left( \frac{3}{2}\widehat{i} + \frac{7}{2}\widehat{j}–\frac{9}{2}\widehat{k} \right) + 1352\frac{135}{2} = 0

C

r\overset{\rightarrow}{r}. (4i^\widehat{i} + 5j^\widehat{j} –10k^\widehat{k}) + 4 = 0

D

r\overset{\rightarrow}{r}. (–i^\widehat{i} + 2j^\widehat{j}+ k^\widehat{k}) + 4 = 0

Answer

r\overset{\rightarrow}{r}.(–5i^\widehat{i} – 3j^\widehat{j} +11k^\widehat{k})+1352\frac{135}{2} = 0

Explanation

Solution

Q M is the mid point of AB

\ M ={(4i^+5j^10k^)+(i^+2j^+k^)2}\left\{ \frac{(4\widehat{i} + 5\widehat{j}–10\widehat{k}) + (–\widehat{i} + 2\widehat{j} + \widehat{k})}{2} \right\}

= 12\frac{1}{2} (3i^\widehat{i} + 7j^\widehat{j} – 9k^\widehat{k}) = a\overset{\rightarrow}{a}

n\overset{\rightarrow}{n} = AB\overset{\rightarrow}{AB} = normal vector of the plane

Q plane is perpendicular to the line AB

Ž n\overset{\rightarrow}{n} = AB\overset{\rightarrow}{AB} = OB\overset{\rightarrow}{OB}OA\overset{\rightarrow}{OA} = (–5i^\widehat{i} – 3j^\widehat{j} + 11k^\widehat{k})

\ Equation of plane is r\overset{\rightarrow}{r}.n\overset{\rightarrow}{n} = a\overset{\rightarrow}{a}. n\overset{\rightarrow}{n}

where a\overset{\rightarrow}{a} = OM\overset{\rightarrow}{OM}