Solveeit Logo

Question

Question: If \(m{{\cos }^{2}}A+n{{\sin }^{2}}A=p,\)then find the value of \({{\cot }^{2}}A\)....

If mcos2A+nsin2A=p,m{{\cos }^{2}}A+n{{\sin }^{2}}A=p,then find the value of cot2A{{\cot }^{2}}A.

Explanation

Solution

Use the formula cot2A=cos2Asin2A{{\cot }^{2}}A=\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A} , to obtain cot2A{{\cot }^{2}}A. To get the values of cos2A{{\cos }^{2}}A and sin2A{{\sin }^{2}}A, first replace cos2A{{\cos }^{2}}A with 1sin2A1-{{\sin }^{2}}A in the given equation and get the value of sin2A{{\sin }^{2}}A and then replace sin2A{{\sin }^{2}}A with 1cos2A1-{{\cos }^{2}}A in the given equation to get the value of cos2A{{\cos }^{2}}A.

Complete step by step answer:
Given equation is mcos2A+nsin2A=p...............(1)m{{\cos }^{2}}A+n{{\sin }^{2}}A=p...............\left( 1 \right)
And we have to find cot2A{{\cot }^{2}}A.
We know, cot2A=cos2Asin2A{{\cot }^{2}}A=\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}.
To find the value of cot2A{{\cot }^{2}}A, we have to find the values of cos2A{{\cos }^{2}}A and sin2A{{\sin }^{2}}A.
We know,
sin2A+cos2A=1 sin2A=1cos2A cos2A=1sin2A \begin{aligned} & {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\\ & \Rightarrow {{\sin }^{2}}A=1-{{\cos }^{2}}A \\\ & \Rightarrow {{\cos }^{2}}A=1-{{\sin }^{2}}A \\\ \end{aligned}
On putting cos2A=1sin2A{{\cos }^{2}}A=1-{{\sin }^{2}}A in equation (1), we will get,
m(1sin2A)+nsin2A=p mmsin2A+nsin2A=p \begin{aligned} & m\left( 1-{{\sin }^{2}}A \right)+n{{\sin }^{2}}A=p \\\ & \Rightarrow m-m{{\sin }^{2}}A+n{{\sin }^{2}}A=p \\\ \end{aligned}
Taking all constants to RHS and terms containing sin2A{{\sin }^{2}}A in the LHS, we will get,
msin2A+nsin2A=pm\Rightarrow -m{{\sin }^{2}}A+n{{\sin }^{2}}A=p-m
Taking sin2A{{\sin }^{2}}A common, we will get,
sin2A(nm)=pm{{\sin }^{2}}A\left( n-m \right)=p-m
On dividing both sides by (n – m), we will get,
sin2A=(pmnm)............(2){{\sin }^{2}}A=\left( \dfrac{p-m}{n-m} \right)............\left( 2 \right)
Putting sin2A=1cos2A{{\sin }^{2}}A=1-{{\cos }^{2}}A in equation (1), we will get,
mcos2A+n(1cos2A)=p mcos2A+nncos2A=p \begin{aligned} & m{{\cos }^{2}}A+n\left( 1-{{\cos }^{2}}A \right)=p \\\ & \Rightarrow m{{\cos }^{2}}A+n-n{{\cos }^{2}}A=p \\\ \end{aligned}
Taking all the constant terms to RHS and all the terms containing cos2A{{\cos }^{2}}A to LHS, we will get,
mcos2Ancos2A=pnm{{\cos }^{2}}A-n{{\cos }^{2}}A=p-n
Taking cos2A{{\cos }^{2}}A common, we will get,
(mn)cos2A=pn\left( m-n \right){{\cos }^{2}}A=p-n
Dividing both sides by (m – n), we will get,
cos2A=pnmn..........(3){{\cos }^{2}}A=\dfrac{p-n}{m-n}..........\left( 3 \right)
Now, Putting cos2A{{\cos }^{2}}A and sin2A{{\sin }^{2}}A in the formula of cot2A{{\cot }^{2}}A, we will get,
cot2A=cos2Asin2A cot2A=pnmnpmnm cot2A=pnmn×nmpm cot2A=nppm \begin{aligned} & {{\cot }^{2}}A=\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A} \\\ & \Rightarrow {{\cot }^{2}}A=\dfrac{\dfrac{p-n}{m-n}}{\dfrac{p-m}{n-m}} \\\ & \Rightarrow {{\cot }^{2}}A=\dfrac{p-n}{{m-n}}\times \dfrac{{n-m}}{p-m} \\\ & \Rightarrow {{\cot }^{2}}A=\dfrac{n-p}{p-m} \\\ \end{aligned}

Note:
Another method –
Given equation: mcos2A+nsin2A=pm{{\cos }^{2}}A+n{{\sin }^{2}}A=p
Divide both sides of equation by sin2A{{\sin }^{2}}A,
mcos2Asin2A+n=Psin2Am\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}+n=\dfrac{P}{{{\sin }^{2}}A}
We know cos2Asin2A=cot2A\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}={{\cot }^{2}}A
mcot2A+n=Psin2A........(1)\Rightarrow m{{\cot }^{2}}A+n=\dfrac{P}{{{\sin }^{2}}A}........\left( 1 \right)
Now, in given equation, put cos2A=1sin2A [As sin2A+cos2A=1]{{\cos }^{2}}A=1-{{\sin }^{2}}A\ \left[ As\ {{\sin }^{2}}A+{{\cos }^{2}}A=1 \right]
=m(1sin2A)+nsin2A=P =mmsin2A+nsin2A=P =(nm)sin2A=Pm =sin2A=Pmnm \begin{aligned} & =m\left( 1-{{\sin }^{2}}A \right)+n{{\sin }^{2}}A=P \\\ & =m-m{{\sin }^{2}}A+n{{\sin }^{2}}A=P \\\ & =\left( n-m \right){{\sin }^{2}}A=P-m \\\ & ={{\sin }^{2}}A=\dfrac{P-m}{n-m} \\\ \end{aligned}
Om putting sin2A=Pmnm{{\sin }^{2}}A=\dfrac{P-m}{n-m} in equation (1), we will get,
mcot2A+n=P(nm)(Pm) mcot2A=P(nm)(Pm)n \begin{aligned} & m{{\cot }^{2}}A+n=\dfrac{P\left( n-m \right)}{\left( P-m \right)} \\\ & \Rightarrow m{{\cot }^{2}}A=\dfrac{P\left( n-m \right)}{\left( P-m \right)}-n \\\ \end{aligned}
Taking LCM & subtracting in RHS,
mcot2A=P(nm)n(Pm)Pm mcot2A=PnPmnP+nmPm mcot2A=nmPmPm mcot2A=m(nP)Pm \begin{aligned} & \Rightarrow m{{\cot }^{2}}A=\dfrac{P\left( n-m \right)-n\left( P-m \right)}{P-m} \\\ & \Rightarrow m{{\cot }^{2}}A=\dfrac{ {Pn}-Pm- {nP}+nm}{P-m} \\\ & \Rightarrow m{{\cot }^{2}}A=\dfrac{nm-Pm}{P-m} \\\ & \Rightarrow m{{\cot }^{2}}A=\dfrac{m\left( n-P \right)}{P-m} \\\ \end{aligned}
Dividing both sides by m, we will get,
cot2A=nPPm\Rightarrow {{\cot }^{2}}A=\dfrac{n-P}{P-m}
Hence, we got cot2A=nPPm{{\cot }^{2}}A=\dfrac{n-P}{P-m}.