Question
Question: If \(m{{\cos }^{2}}A+n{{\sin }^{2}}A=p,\)then find the value of \({{\cot }^{2}}A\)....
If mcos2A+nsin2A=p,then find the value of cot2A.
Solution
Use the formula cot2A=sin2Acos2A , to obtain cot2A. To get the values of cos2A and sin2A, first replace cos2A with 1−sin2A in the given equation and get the value of sin2A and then replace sin2A with 1−cos2A in the given equation to get the value of cos2A.
Complete step by step answer:
Given equation is mcos2A+nsin2A=p...............(1)
And we have to find cot2A.
We know, cot2A=sin2Acos2A.
To find the value of cot2A, we have to find the values of cos2A and sin2A.
We know,
sin2A+cos2A=1⇒sin2A=1−cos2A⇒cos2A=1−sin2A
On putting cos2A=1−sin2A in equation (1), we will get,
m(1−sin2A)+nsin2A=p⇒m−msin2A+nsin2A=p
Taking all constants to RHS and terms containing sin2A in the LHS, we will get,
⇒−msin2A+nsin2A=p−m
Taking sin2A common, we will get,
sin2A(n−m)=p−m
On dividing both sides by (n – m), we will get,
sin2A=(n−mp−m)............(2)
Putting sin2A=1−cos2A in equation (1), we will get,
mcos2A+n(1−cos2A)=p⇒mcos2A+n−ncos2A=p
Taking all the constant terms to RHS and all the terms containing cos2A to LHS, we will get,
mcos2A−ncos2A=p−n
Taking cos2A common, we will get,
(m−n)cos2A=p−n
Dividing both sides by (m – n), we will get,
cos2A=m−np−n..........(3)
Now, Putting cos2A and sin2A in the formula of cot2A, we will get,
cot2A=sin2Acos2A⇒cot2A=n−mp−mm−np−n⇒cot2A=m−np−n×p−mn−m⇒cot2A=p−mn−p
Note:
Another method –
Given equation: mcos2A+nsin2A=p
Divide both sides of equation by sin2A,
msin2Acos2A+n=sin2AP
We know sin2Acos2A=cot2A
⇒mcot2A+n=sin2AP........(1)
Now, in given equation, put cos2A=1−sin2A [As sin2A+cos2A=1]
=m(1−sin2A)+nsin2A=P=m−msin2A+nsin2A=P=(n−m)sin2A=P−m=sin2A=n−mP−m
Om putting sin2A=n−mP−m in equation (1), we will get,
mcot2A+n=(P−m)P(n−m)⇒mcot2A=(P−m)P(n−m)−n
Taking LCM & subtracting in RHS,
⇒mcot2A=P−mP(n−m)−n(P−m)⇒mcot2A=P−mPn−Pm−nP+nm⇒mcot2A=P−mnm−Pm⇒mcot2A=P−mm(n−P)
Dividing both sides by m, we will get,
⇒cot2A=P−mn−P
Hence, we got cot2A=P−mn−P.