Solveeit Logo

Question

Mathematics Question on nth Term of an AP

If mm arithmetic means are inserted between 11 and 3131 so that the ratio of the 7th7^{th} and (m1)th(m - 1)^{th} means is 5:95 : 9, then find the value of m.

A

14

B

24

C

10

D

20

Answer

14

Explanation

Solution

Let the means be x1,x2,...xmx_{1}, x_{2}, ... x_{m}
so that 1,x1,x2,...xm,311, x_{1}, x_{2}, ... x_{m}, 31
is an A.PA.P. of (m+2)(m+2) terms.
Now, 31=Tm+2=a+(m+1)d=1+(m+1)d31=T_{m+2}=a+(m+1) d=1+(m+1) d
d=30m+1\therefore d=\frac{30}{m+1}
Given :x7xm1=59: \frac{x_{7}}{x_{m-1}}=\frac{5}{9}
T8Tm=a+7da+(m1)d\therefore \frac{T_{8}}{T_{m}}=\frac{a+7 d}{a+(m-1) d}
=59=\frac{5}{9}
9a+63d=5a+(5m5)d\Rightarrow 9 a+63 d=5 a+(5 m-5) d
4.1=(5m68)30m+1\Rightarrow 4.1=(5 m-68) \frac{30}{m+1}
2m+2=75m1020\Rightarrow 2 m+2=75 m-1020
73m=1022\Rightarrow 73 m=1022
m=102273=14\therefore m=\frac{1022}{73}=14